i Best
~ Available
Copy

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A283 669
GG

A Platform Independent Application
of
Lux Illumination Prediction Algorithms

by

Michael Theodore Lester

June 1994

Thesis Advisor: Douglas J. Fouts

Approved for public release; distribution is unlimited.

ORTC G ei s awiuriss LBD 3

94-27
Wmmmwﬁi§%
G

94 8 25 (12

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

Form
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

[} S
T DETRBUTIONAVATABILITY OF REFORT
Approved for public reiease, distribution unlimited
3. MONITORING ORGANIZA TION REPORT NUMBER(S)
Ga. OR] [7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduste School (if spplicable)
[Gc. ADDRESS (Ctty, State, and ZIP Code) . (City, State, and ZIF Code)
A OF TORBIN R ONSORING 35, GFFCE STVB0L—| 3 FROCOREMENT BSTROMENT DENTICATION NUVBER
X . INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
[T ADORESS (City, State, mnd ZIP Code) 10. SOURCE OF FUNDING NUMBERS _ _
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.
T TP it Socry Clocicaion)

A Platform Independent Application of Lux {ilumination Prediction Algorithms

12, PERSONAL AUTHOR(S)
Lester, Michael Theodore
13s. TYPE OF REPORT 13b. TIME COVERED 14, DAiEOFREPORT(YwM.D!)’) 15. PAGE COUNT
Masters Thesis FROM TO____ June 1994 126

16. A
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

Is.mmmmmmtﬁywm&)

7 COSATI CODES
[FEDD GROUP _____ SUB-GROUP

Illumination, NVG, lllumination Prediction

19, ABSTRACT (Continuo on reverse if necessary and identify by block number)

Naval Aviators require prior knowledge of the time and location of astronomical phenomena in order to properly pian and execute
combat and training operations during the hours of darkness using Night Vision Devices (NVD's). This thesis presents a computer application of
illumination prediction algorithms which predict the time of selected astonomical phenomena. This computer program is platform independent
(given the proper libraries), event-driven, object-oriented, and utilizes a Graphical User Interface (GUT). Using this application, operators in the
field will be able to determine the time of selected phenomena and the quantity of illumination, measured in Lux, for a given time and date.

mmm 21. ABSTRACT SECURITY CLASSIFICATION

(%] UNCLASSIFIEDUNLIMITED] SAME ASRPT. () oncusers Unclassified
"Da NAME OF RESPONSIDLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 72c. OFFICE SYMBOL,
Don!!us 1. Fouts 408-656-2852 EC/FS
m 1473, JUN 56 Previous editions arc cbeolete.
S/N 0102-LF-014-6603 Unclassified

Approved for public release; distribution unlimited.

A Platform Independent Application
of
Lux Illumination Prediction Algorithms

by

Michael Theodore Lester
Captain, United States Marine Corps
B.S., United States Naval Academy, 198§

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the
NAVAL POSTGRADUATE SCHOOL

June, 1994 P
Author: M 7@
Michael Theodore Lester
Approved by: .
Do J. Fouts, Thesis Advisor

ymond F. Bernstein Jr., Seco%eader
SV bl Q. /1 g

Michael A. Morgan, Chai¥man,
Department of Electrical and Computer Engineering

i

Abstract

Naval Aviatorsrequ _ .:or knowledge of the time and location of astronomical
phenomena in order to properly plan and execute combat and training operations during
the hours of darkness using Night Vision Devices (NVD's). This thesis presents a
computer application of illumination prediction algorithms which predict the time of
selected astonomical phenomena. This computer program is platform independent (given
the proper libraries), event-driven, object-orie~ted, and utilizes a Graphical User Interface
(GUI). Using this application, operators ir. ."< fe. will be able to determine the time of
selected phenomena and the quantity of illumina::.n, 1aeasured in Lux, for a given time
and date.

Accesion For

NTIS CRA&I g
DTIC TAB
Unannounced O
Justification

By
Distribution |

Avaifability Codes

. Avail and/or
Dist Special

ﬁ,

iii

L. INTRODUCTIONccitriirinninnnincscsissessssmessasssssssnssssssssssssssesssssosssssasssssssssens 1

A. BACKGROUNDooctitinecincnsniensssisenssssisesensssssssssessssssasssssssssassssseses 1

B. OBJECTIVES........coocimvctsnriusevrcesnissessassssssasssssssossesesssssorssssssassorssssssssssesesss 1

C. SUMMARY OF THESISccviiiimisiniinseninsansssssessasssensissssssssensessases 2

1. Night Imaging Considerations.............cocceunrvcucernnresnscssensasesencsisenes 2

2. Prediction Algorithms............c.ccceciveenreiccnncennenensssersnsensasssenesnssnssesanns 2

3. Testing and Validation..........cccceveenircnenecsncsnsenessnsnensssscsassisassssssene 2

4, USerINErface...........ccvciiviimnrensensnsnsinissnsisesnssnssssesssssssssssssssanssssens 3

5. Coding ConSiderations..............ccoreseseressesessnssessasssasonsasessssassesaasassasas 3

6. Future Work Needed / Upgradesc.ovcunusinisincusisnsssiasusesssssonses 3

7. User's Manual (APPendix)ccceeveueeinssncssmensaseseussssssnssssnscssasssenes 3

II. NIGHT IMAGING CONSIDERATIONS 5

A. THE NATURE OF LIGHTccccsversinisensusisssisssesissasssessasasssssessassssssnsacs 5

B. PROBLEMS WITH ILLUMINANCE PREDICTIONccccosuerrurerivreanns 7

1. Spectrum SCIECHONcocceuiniverecnirisesercresnssicsisssiseesiacsssansnsssassasneas 7

2. Atmospheric Attenuation...........cccorvrecncvesssnesesnssesassasessasaane .8

3. Altitude DiSCTEPANCYccoeriersesessensssnsssscsnsseacssesssesassssssassssssssasssesess 8

4. GeographiC Limits ... 8

5. MEtCOTOIOZY ...cccorurerserccsannsninenssnsnsesssssssossssssessssssassossasasansasnsansnsaness 9

6. INUMINANCEcoonrercrcnsersnnesinsnsessessssessasessssesssssssssassssssensssessssssssssses 9
IIL. ALGORITHMSccovenneninensenissmsnrsssisssasmcsssssssassssssessasssssssnsasssasssansssssssssssssses 11
A. FAST VERSUS ACCURATE 11
B. ACCURACY ...cocovtrruniasnrninsssissssssssassssssesssssssssssssssssssssssssssssassassssssssssssessasess 11

iv

C. ALGORITHM OVERVIEWciiiirintsesirinsisesinnmscsiosssnsassssssnssssssesessens 12

L GORETAL.......overiinricninncnscssacssscatesesssnsescsssssnssssssssnssenns 12

2. Coding ConSiderations.............coecrsrersucrcrrasasasassessennensosnenssesassassenesenes 13

IV. TESTING AND VALIDATIONcoceceeeurirenmnmsnreninsassssessnsssssssesarssssanessseasaessssseneaes 15
A, TESTING......cccviirennsnnsssnsensssssasescssssisessssasssassssasessssssnsssssassrensasssasassssssssssases 15

1. Preliminary.......unncncnninnnnsnnnneninnsnismnisisesesissssasssssssess 15

2. FIDAL.....ooorreiecrnnannnnrasassssnssssssssssasssssssasssssssssssssesssssasnosssasssssnssnsane 15

B. VALIDATION.......coumcrnnnnisnsssininssisssnsusssessseasassssssssssssssessnsnssssnsssasassassess 16

V. USER INTERFACEcureinininnrsncnssssessssssssssissssasssesssssssssssssssssessasssassscssssssses 17
A. GENERAL........ciitininncnsesnnisisiisisinsssssasssessasssisssssssssssssssasassssscsins 17

B. MENUS.....ooteeeeenrercsnnsssssssssssncsssssrassasssssesssssssssssssssssessssssssssesessssesssssasssenens 17

C. DIALOG BOXES........cccosnsurereususnssnssssrsasasssessasesessassssssseassssssssasasasssssessssssssns 17

VI. CODING CONSIDERATIONScccccovninirinsnnsesnassesesescassssensasassssssssssssseses .19
A. LANGUAGE CHOICEocvunirreressnnsersnsesssassmsassncssssssssissssassssssasssssseasass 19

B. LIBRARIES..........cocouiniireinirissaisinsressissasssssessssassassssssssssassssssasssensossessansasssn 19

C. PROGRAM STRUCTUREccouvrrnerinnnsrnsnsesessasassssssssasessssassssssssnsassses 19

1. Control Hierarchyccoceceiniicneinscsiniessiansesisissensasssesesssssnsnsscses 19

2. ClaSSES.......coerricrenniscninsnsasesssnsensssasnsasasssssnsssssssersssssssasasasasasasasasssasas 21

3. Program FIow........cccccincrinnicsnnsennnsnenisssnsonsassssnssussssssnssessasss .24

4. Calendar OptimiZation.............ccevueneuiniunsiiesesnensssacsssecnsssnssssescsasases 27

VII. FUTURE WORK NEEDED / UPGRADES............coceeveninnineninioasene .32
A. FUTURE WORK NEEDED.........ccccesesusisimminsissssnsesscsnssssssisesessssasessssnsasaes 32

B. FUTURE UPGRADES .33
APPENDIX A: USER'S MANUAL........orinennsreneisissssisensasesssssssssssssssasasssssessasasssns 34
APPENDIX B: SOURCE CODEccccoceenmnnnirinrsmissnsssnssssssmsisessssassessessassssnssessassssons 56

I. INTRODUCTION
A. BACKGROUND

Combat operations are increasingly conducted during the hours of darkness.
Operations at night give a decided tactical advantage to the technologically advanced
force possessing night vision devices (NVD's). Helmet mounted NVD's used by aviators
are limited, however, to the simple amplification of ambient light.[1] Operations
involving NVD's must be planned to coincide with appropriate illumination. Since
NVD's are passive, i.e. they merely magnify available light, they require a minimum
amount of illumination to operate. Additionally, since they magnify light on the order of
10,000 times (AN/PVSS5: X10,000 gain, AN/AVS6: X25,000 gain){1] , there can not be
too much illumination or the NVD's will reach saturation and shutidown to protect their
circuitry. Battlefield planners require a method for determining the time and location of
astronomical phenomena such as sun rise, sun set, moon rise, moon set, and for
determining the amount of light available from these phenomena. Previously, this
information was available in tabular form in the Nautical Almanac or from a computer
program called LITELEVL.

LITELEVL is written in the ubiquitous GWBASIC. It is completely text based and
runs only on MSDOS compatible personal computers.[2] LITELEVL is not optimized
for any parameters and thus has a response time of many seconds for a single line of a
planning calendar output.

B. OBJECTIVES

This thesis will produce an improved application of the tested illumination prediction
algorithms. This application, called MOONLITE to differentiate it from its predecessor,
has the following properties:

Platform independent. With proper libraries the source code may be compiled
to run under Microsoft Windows™, Microsoft Windows NT™, IBM OS/2™,
DOS™ (graphics mode), DOS™ (text mode), UNIX Motif, and (in the future)
Apple Macintosh™.

Graphical User interface featuring pull down menus and point-and-shoot dialog
boxes.

Event-driven architecture.

Object-oriented design for ease of maintenance and upgrading.
Ability to store multiple geographic locations for future analysis.
Increased speed.

Increased accuracy.

C. SUMMARY OF THESIS

1. Night Imaging Considerations

This section investigates the basic concepts of illumination and illuminance. It

presents a short tatorial on the nature of light, the movement of the heavenly bodies, and

the effect of meteorology on local illuminance. It also examines the effects of altitude,

geography, and human interpretation on the accuracy of predicted astronomical events.

2. Prediction Algorithms
Two separate algorithms are used in MOONLITE. They are referred to as the

"fast" algorithm and the "accurate" algorithm. This chapter examines both algorithms. It

reviews their relative strengths and weaknesses and briefly explores their coding.

3. Testing and Validation
Prior to its release to the subordinate units of the Department of Defense,
MOONLITE must be tested and validated by the United States Naval Observatory.

Iritial testing was accomplished during coding. This chapter briefly introduces the
benchmarks by which the data is judged. Rigorous testing will be accomplished at the
Naval Observatory.

4. User Interface
The user interface is perhaps the most important part of a program. Regardless of
the accuracy or efficiency of the underlying code, the user will either use or not use a
program dependent upon the user interface. A great deal of time and effort was devoted
to making MOONLITE's user interface intuitive, friendly, and efficient. This chapter

examines the nuances of the user interface, detailing design considerations and decisions

where necessary.

S. Coding Considerations
The coding of a program determines its accuracy and its efficiency. This chapter
examines the general coding of the program. Class structures and data structures are
examined in this chapter. Coding decisions and concerns are addressed, as are logic and

program flow.

6. Future Work Needed / Upgrades
This chapter outlines future work which will be accomplished by the author at the
next duty station. In addition, ideas for future enhancements are discussed.

7. User's Manual (Appendix)
This appendix is designed to serve as a user's manual for MOONLITE. It may be
removed from the attached material and distributed with MOONLITE to the end user. It
is designed to be concise enough to allow a person with limited technical background to

install and use MOONLITE. It describes the input and output requirements in addition to
presenting the reader with an easy to follow tutorial for anticipated actions.

II. NIGHT IMAGING CONSIDERATIONS
A. THE NATURE OF LIGHT

Ligit, as we will use the term here, is the portion of the electromagnetic spectrum
which is visible to the human eye. The electromagnetic spectrum spans all frequencies
from sub-aural (less than 20 Hz) to cosmic rays (1022 Hz) and beyond. Electromagnetic
energy with a wavelength between 400 and 700 nanometers is visible to humans. We call
this range the visible spectrum. Immediately below the human threshold of vision is the
near infrared region.[1]

Helmet mounted night vision devices used by aviators intensify available light. More
specifically, they intensify e light which is reflected from an object. The amount of
light reflected from an object is called luminance. An object's luminance is a function of
how much light is striking the object, the illuminance, aud the reflectivity of the object.
With the same illuminance, a light object such as snow will have a greater luminance than
a dark object such as an asphalt road. Prediction of night vision device's efficiency is
confined to the prediction of the illuminance of all objects in a certain area regardless of
their reflectivity and resultant luminance. Illuminance is expressed in Lumens per square
meter, or Lux. One Lux is equal to 0.0929 foot-candles. Table 1 shows the relative

illuminance of various sky conditions.{1]

TABLE 1. ILLUMINANCE LEVELS OF VARIOUS SKY CONDITIONS

Sky Condition Approx. [lluminance (Lux)
Direct Sunlight 1-1.3x103
Full Daylight (ot direct) 1-2x104
Overcast Day 103

Very Dark Day 102
Twilight 10

Deep Twilight 1

Full Moon 10-1
Quarter Moon 10-2
Moonless, Clear Night Sky 10-3
Moonless, Overcast Night Sky 104

Solar light, light emanating from stars, the moon, and other solar phenomena, is
principally comprised of wavelengths outside the visible spectrum. For this reason, Night
Imaging Devices are designed with their principle sensitivity outside of the visible
spectrum and more into the near infrared spectrum. Figure 1 illustrates the relative
wavelengths of human visible spectrum with that of the night sky and two modern night

vision devices.[1]

i gt i sl 4

Relative Intensity / Sensitivity

400 450 SO0 5SSO0 600 650 700 750 800 850 900 950
Wavelength (nanometers)

Figure 1. Comparison of visible spectrum versus night vision devices

The third generation AN-AVS6 Night Vision Goggles (NVG) are sensitive in an area
well outside of the human visual spectrum. This greatly enhances their ability to amplify
ambient light at night, but it hinders our ability to predict their efficiency as discussed in

the next section.

B. PROBLEMS WITH ILLUMINANCE PREDICTION

1. Spectrum Selection

Modern illumination algorithms are designed to predict illuminance, the amount of

visible light present. There have been no definitive studies to date on the amount of light
presented at the surface of the earth during the hours of darkness in a spectrum other than
that of the visible spectrum. In practice, the United States Military assumes that the
illuminance in the visible spectrum is directly proportional to the amount of light in the
near infrared spectrum.[3]

2. Atmospheric Attenuation
Since all light reaching the surface of the earth from the cosmos must pass through

the atmosphere, the composition of the atmosphere has a measurable effect on the
attenuation of that light.

The atmosphere is the most dense at the surface of the earth. As one increases in
altitude the density of the atmosphere decreases. With this decrease in density, the
attenuation effect of the atmosphere is also decreased. For computational purposes, the
atmosphere is considered homogenous to an altitude of 8.46 kilometers. Using this
simplification does not significantly alter the results of illuminance prediction. [4]

3. Altitude Discrepancy

The computation of astronomical phenomena is complicated at altitudes non-
coincident with the surface of the earth. At high altitudes the atmosphere does not
attenuate sunlight or moonlight to the same degree to which it does at sea level. The
apparent rise and set of the heavenly bodies is offset at altitude. A person on the surface
of the earth may observe sun set at the same time a person in a jet at 30,000 feet can still
view the entire disc of the sun.

Generally accepted phenomena such as civil and nautical twilight are also offset at
altitude. Civil and nautical twilight are defined as the time at which the sun is six and
twelve degrees, respectively, below the horizon. As with sun set, there will be more light
at altitude during twilight than their would be on the surface of the earth.[3]

4. Geographic Limits
Although geographic limits may seem trivial, they still affect the prediction of
astronomical phenomena. Astronomical phenomena is predicted relative to a plane which
is assumed to be tangent to the surface of the earth at the observer's latitude and longitude

at sea level. This assumption obviates the problems of a person standing on a mountain
or in a valley and thus observing astronomical phenomena at a different time.

Illuminance is predicted assuming that the earth is visible to the source of
illumination at the desired moment in time. For example, if a full moon has just risen and
is currently only ten degrees above the horizon, a person on one side of a mountain will
be fully illuminated. A person on the other side of the mountain would still be in
darkness. Shadowing and obscuration is not addressed by the prediction algorithms. It is
incumbent upon the user of the algorithms to understand the limitations of the

predictions.

5. Meteorology

Cloud formations, fog, smog, and other obscurants in the sky will attenuate the
amount of light impinging upon the earth from celestial sources. It is possible to account
for this attenuation in a computer program, but it requires the end user to determine the
quantity of attenuation. Since most end users will not have equipment capable of
measuring cloud density, MOONLITE does not allow the user to apply an attenuation
scaling factor. Aviators must use the experience gained during their NVG qualification to
determine the amount of NVG degradation due to meteorology.[1]

6. Illuminance
Illuminance, as described above, refers to the amount of light being shed on an
object. MOONLITE predicts the amount of light available from astronomical sources.
An NVG user, though, may have artificial light available from a nearby city or town, or
from battle field illumination, burning oil wells, etc. It is impossible for a predictive
program to consider the myriad of artificial sources of light that might be present. Again,

the NVG user must use his or her experience to determine the amount of light available
for NVG use.

10

IIl. ALGORITHMS
A. FAST VERSUS ACCURATE

MOONLITE uses two different sets of algorithms for determining celestial
phenomena. The fist set of algorithms is referred to as the fast algorithms and are
iterative in nature. These algorithms are found in the United States Naval Observatory
Circular No. 171. The fast algorithm's most glaring shortcoming is that it diverges at
latitudes above 60 degrees north or south.[5] This divergence can manifest itself as a
complete miss of a phenomena such as sun rise. A more subtle error, however, could
occur where the algorithm produced output that although flawed, appeared to be correct.
The fast algorithms are not used for prediction above 60 degrees north or south latitude.

The other set of algorithms is referred to as the accurate algorithms. The accurate
algoﬁthm§ are currently being perfected at the United States Naval Observatory. These
algorithms are interpolative in nature and will produce accurate output at any location on
the carth. There is a trade off in processing time between the two algorithms. The
accurate algorithms take substantially longer to compute an event than the fast
algorithms. [3]. Although an advance copy of the accurate algorithm has been obtained
prior to the completion of this thesis, they have not been implemented due to current
instabilities which are being corrected by the Naval Observatory. MOONLITE was
written to facilitate the accurate algorithms as soon as they are available. The remainder
of this thesis will therefore deal with the fast algorithms.

B. ACCURACY

The design goal of the fast algorithm was to identify a phenomena within 0.5 degrees
of its actual azimuth and altitude. The maximum temporal error, assuming a 0.5 degree
error in placement, would therefore be two minutes. The temporal values are relative to

11

the mean time of the selected time zone. Each time zone (with variations for political and
geographic anomalies) is fifteen degrees wide. Phenomena are computed using the time
in the center of the time zone. An observer can expect a divergence from the predicted
times relative to their distance from the center of the selected time zone.[3]

Rounding of numbers may cause discrepancies larger than the target goals in some
cases. Consequently, the last digit of angles and times should be considered uncertain.
B]

Illuminance is given in Lux, and should be accurate to one or two digits. Due to local
conditions (artificial light, meteorology, etc.) the calculated illuminance may differ from
the actual illuminance by a factor of 10 or more.[3]

The Moon's apparent phase is independent of Earth's atmosphere, but approximations
in the equations for calculating it may produce errors of one or two units in the computed
quantity.[2]

MOONLITE was coded with all variables and constants defined as "doubie”, thus
internal computer "accuracy" is carried out to 64 bits using the IEEE real standard. This
format allows representable numbers between -2,147,483,648 and 2,147,483,647.[A]

C. ALGORITHM OVERVIEW
1. General
The fast algorithm is presented in reference [3]. The algorithm is presented in
BASIC and FORTRAN. In order to make MOONLITE platform independent, it was
necessary to code MOONLITE in C++. Originally, compiling the FORTRAN code and
linking it into a C++ user interface was contemplated, but this approach was rejected due
to possible incompatibilities in multiple platform object code.

12

The FORTRAN and BASIC code was converted to C++ code for inclusion in
MOONLITE. To aid in maintenance and debugging, the algorithms are designed as a
separate class of MOONLITE named fast_algorithm. The C++ code for fast_algorithm
may be found in Appendix A.

2. Coding Considerations

If one examines the original BASIC code and the MOONLITE code for the
fast_algorithm class, one will notice that the MOONLITE fast_algorithm class does not
use subroutines. This is contrary to modern modular programming technique, yet seemed
advisable for MOONLITE. Using passive profiling techniques, the fast_algorithm was
identified as a computationelly intensive, and thus time consuming, component of the
MOONLITE program. Since the algorithm is somewhat linear in flow, it was coded to
minimize loop iterations and subroutine calls, and thus maximize runtime efficiency.[7)

By removing the subroutines and placing them "in-line", the code increased in
length from 225 statements to 233, but it also removed 49 GOTO statements and 20
GOSUB statements.

Each GOSUB statement would cause a context switch with attendant overhead.
The GOTO statement in GWBASIC, the language MOONLITE's predecessor was written
in, is implemented by a linear search algorithm. MOONLITE uses structured
programming to remove the GOTO statements. This structured technique allows the
compiler to place a hard coded jump address in the machine code versus an iterative
algorithm which takes muitiple lines of machine code to implement.

Where possible, code was hand optimized while converting from BASIC tb C++.
For example, in the original BASIC code are the following lines:

340FORL=1TO4 m
350 ON L GOTO 370, 650, 650, 360

13

360 C=347.01
3MM=35+DT
This was replaced with:

for(mtl=); L <= 4; L++){ Q)
 (L==g) c = 347.81;

i ((Le=1) | (L==4)) (

m=05+DT;

}mnmmmmm
This rewriting of the BASIC code removes four GOTO statements and replaces

them with two IF statements. Since the GOTO statements cause an iterative loop of
many cycles whereas the IF statements do not, the latter code is markedly faster.

14

IV. TESTING AND VALIDATION

A. TESTING
1. Preliminary

During the translation of the fast algorithms from reference BASIC and
FORTRAN to the C++ code of MOONLITE, constant testing was performed to ensure
parallel results. For two randomly selected cases, the BASIC code and C++ code was
stepped and compared line by line to ensure matching results after each statement.

Results between MOONLITE and LITELEVL are not exact. Discrepancies have
been traced primarily to the way the two languages handle the trigonometric functions.
Discrepancies manifest themselves as a difference in time of one minute or less. During
initial testing, when a discrepancy was found between the BASIC handling of a SIN
function and the C++ handling of the function, the calculation was run on an HP48SX
calculator and on MATLAB V4.0 to compare results. In all cases the results of the HP
calculator and of MATLAB matched the results of the MOONLITE C++ code. Thus, the
MOONLITE C++ code is considered to be more accurate than the original BASIC code.

Reference [5], table A, presents test cases for program certification. MOONLITE
was tested locally against these standards and found to be within one minute of time and
within 0.5 degrees to all parameters. This is within design specification, and thus shows
that MOONLITE's C++ code is functioning properly.

2. Final
Prior to release, MOONLITE will be tested against the United States Naval
Observatory test suite. The Naval Observatory has determined a number of test
conditions which will test boundary conditions in the program. These boundary
conditions are the most ill-conditioned points the program can be expected to handle.[3]

15

8. VALIDATION

Upon completion, MOONLITE will be tested at the Unites States Naval Observatory
by the Astronomical Applications Division. After successfully completing their tests, the
program will be validated by the Observatory for use by the Department of Defense.

16

V. USER INTERFACE
A. GENERAL

There were four main criteria envisioned for the user interface. They were:

Must be relatively intuitive
Must be graphical

Must be transportable
Must minimize input errors

To ensure that these criteria were met, MOONLITE was developed in Microsoft
Windows using Borland C++ version 4.0. Standard Windows conventions were adhered

to, for example, the upper left hand comer of a window contains a control box which will

allow the user to minimize, maximize, move, or close the window.[8]

B. MENUS

All menus are standard pull-down menus allowing the user to select an option by
clicking on that option with the mouse. Menus were designed as "sticky" menus, i.e. the
user does not have to hold the mouse button down to keep the menu active. Menus may
be accessed without a mouse by pressing the ALT key and the first letter of the menu
choice. For example, the user may activate the FILE menu by pressing ALT F.

MOONLITE's menus are only one level deep. This was a conscious design choice to
ensure the most simplistic and thus most easily understood user interface.

C. DIALOG BOXES

Almost every menu choice leads to a dialog box. Each dialog box contains a HELP
button which will activate context sensitive help for that dialog. Currently, context

17

sensitive help is disabled during research into the portability of Microsoft Windows help

18

V1. CODING CONSIDERATIONS

A. LANGUAGE CHOICE

MOONLITE was written in Borland C++ version 4.0. This language was chosen for
a number of reasons. First, C++ is the most ubiquitous object-oriented language in use
today. MOONLITE was written using object-oriented techniques in order to facilitate
future maintenance and upgradability. Second, NAVAIR has expressed interest in
interfacing MOONLITE with TAMPS (Tactical Air Mission Planning System) and
TAMPS is written in C++. Third, multiple platform libraries were available for C++.
Borland's product was chosen as development suite because of its enhanced development

and debugging tools.

B. LIBRARIES

ZAPP libraries were purchased from Inmark corporation for the development of
MOONLITE. Inmark currently supplies libraries for Microsoft Windows™, Microsoft
Windows NT™, Microsoft DOS™ (graphics mode), Microsoft DOS™ (text mode), IBM
0S/2™, UNIX MOTIF™, and in the near future for Apple Macintosh™. Using these
libraries, it is possible to recompile source code written to take advantage of the libraries
for a different platform with out re-coding. This saves development cost and presents the
end user with a consistent interface across multiple platforms. Currently, MOONLITE is
compiled only for Microsoft Windows™.

C. PROGRAM STRUCTURE

1. Control Hierarchy
MOONLITE is an event driven program. Event driven programs perform no
function until prompted by an event. MOONLITE, once running, simply waits for the

19

user to initiate an event. The most common event will be a menu choice, but it could also
be a window resize, move, or termination.

The top level of the MOONLITE program is the event handler. The event handler
fields all events and then instantiates and sends a message to client classes as needed. A

hierarchy of events is shown in Figure 2.

Event Handler
Menu Choice Window Action

——> Restore

—p Move

L Size

> Minimize
Maximi
. Close
Switch To
L
FILE EDIT LOCATIONS RUN HELP
—» NEW —» CUT —»ADD —p CALENDAR —» INDEX
—» OPEN —» COPY 3 EDIT l—» SPOT DETAIL —» KEYBOARD
|—» SAVE L—»DELETE 3 POSITION CHART {3 COMMANDS
l—p» SAVE AS |__p. DAILY EVENTS Ly PROCEDURE
Ly PRINT {—p USING HELP
> PAGE SETUP » ABOUT
Ly PRINTER SETUP
EXIT

——

Figure 2. Event Handling Hierarchy
The single level menuing of MOONLITE is evident from Figure 2. Each menu

option is modal in MOONLITE, i.e. another option cannot be chosen until the user is

20

finished with the current option. Rewriting MOONLITE to handle MDI (Multiple
Document Interface) may be an option for future enhancement.

It is important that programs written to operate in a multitasking environment,
such and Microsoft Windows or UNIX, be event-driven. An event-driven program will
"sleep" when it is not fielding events. This allows maximum processor utilization since
the program is not executing a "busy-loop" or polling for user input and thus allows other
processes to execute while it is waiting for an event.[7)

2. Classes
As stated earlier, MOONLITE is written using object oriented techniques. Object
oriented programming consists of encapsulating member functions and variables in a
class, the instantiation of which is an object. The basic class hierarchy of MOONLITE is

shown in Figure 3.

Figure 3. Class hierarchy of derived classes

21

The base class from which most other classes are derived is zZEvH, the event
handler. Derived from zEvh is zZWindow and zZFrameWin. ZFrameWin is a class which

when instantiated and given focus presents a standard windows frame on the monitor.
This frame can not hold text or graphics, but it can hold other windows which do hold
text and graphics. ZFrameWin's purpose is to create a standard Windows window
capable of resizing, moving, minimizing, maximizing, and terminating. [8]

Derived from zFrameWin is zAppFrame and MenuFrame. ZAppFrame is a
special zFrameWin which is designed to be the topmost window of an actual application
such as MOONLITE. Code segment (3) illustrates the code used to instantiate the upper
level application window for MOONLITE.

MenuFrame *mainWnd=new MenuFrame(0,new zSizer(10,10,625,520),zSTDFRAME,"MOONLITE"); (3)

Code segment (3) instantiates a new instance of a class of MenuFrame with an
attendant pointed called mainWnd. In its constructor, it sets a default window size using
the class zSizer. In this instance the window's upper left hand comner starts at pixel 10,10
and ends at pixel 625,520. This size is aesthetically pleasing for a standard 1024 X 768
pixel display.

After instantiating the main application window the menu items are added. The
menu itself was created using the resource workshop of Borland C++. Using the resource
workshop, a description of the desired menu is created then passed to the main
application window for display. Code segment (4) shows the only MOONLITE line of
code needed to attach a menu to the parent application.

menu(new zMenu(this, zZResid(MENU_MAIN))); “@

22

Code segment (4) instantiates a new zMenu and passes an identification number to
the constructor. This identification number is assigned to the menu resource and is a
method of uniquely identifying resources. A portion of the menu description is shown in
code segment (5). One can see that the menu description includes the displayed title of
the menu item, its parent menu item, a control key keyboard shortcut if available, and an
identity number to be passed to a function should that menu item be called.

POPUP "&File®)
{
MENUITEM "&New", ID_MENU_FILENEW

MENUITEM "Save &as...*, ID_MENU_FILESAVEAS
MENUITEM "&Print...", ID_MENU_FILEPRINT, GRAYED

MENUITEM "Page se&tup...", ID_MENU_FILEPAGESETUP, GRAYED
MENUITEM *"Pé&rinter setup...”, ID_MENU_FILEPRINTERSETUP, GRAYED
MENUITEM SEPARATOR

MENUITEM "E&xit", ID_MENU_FILEEXTT

)

In order to have our desired function called when menu item is selected, it is
necessary to override the default event handler for each menu item. Code segment (6)
illustrates how the event handler is overridden.

menu()->setCommand(this,(CommandProc)MenuFrame::doExit,ID_MENU_FILEEXIT), ©)
menu()->setCommand(this,(CommandProc)& MenuFrame::AddLocation,ID_MENU_LOCS_ADD);
menu()->setCommand(this,(CommandProc)&MenuFrame::EditLocation,ID_MENU_LOCS_EDIT);
menu()->setCommand(this,(CommandProc)&MenuFrame::DeleteLocation, ID_MENU_LOCS_DELETE);
menu()->setCommand(this,(CommandProc)&MenuFrame::FileSave ID_MENU_FILESAVE);
menu()->setCommand(this,(CommandProc)&MenuFrame: :FileOpen,]ID_MENU_FILEOPEN);
menu()->setCommand(this,(CommandProc)&MenuFrame: :FileNew,ID_MENU_FILENEW);
menu()->setCommand(this,(CommandProc)&MenuFrame::SpotData, ID_MENU_SPOTDATA);
menu()->setCommand(this,(CommandProc)&MenuFrame::Event,ID_MENU_DAILYEVENTS);
menu()->setCommand(this,(CommandProc)&MenuFrame::Position,ID_MENU_POSITION);

Here again we see an identifying number passed to each function in the form of a
descriptive name. The file defines.h contains a list of all identifiers used in MOONLITE
and their corresponding numeric identifier. Numeric identifiers are arbitrarily chosen. In
MOONLITE each logical grouping is given its own hundreds digit identifier with

23

member items being numbered sequentially. Code Segment (7) is an example of some

identifiers from defines.h.

#defiee MENU_MAIN 100)
#define ID_MENU_POSITION s ‘
#define ID_MENU_FILENEW 101

#define ID_MENU_FILEOPEN 102
#define ID_MENU_FILESAVE 103
#define ID_MENU_FILESAVEAS 104
#define ID_MENU_FILEPRINT 105
#define ID_MENU_FILEPAGESETUP 106
#define ID_MENU_FILEPRINTERSETUP 107

#define ID_MENU_FILEEXIT 108

In C++ each define is substituted by its defined value at compile time. Thus
ID_MENU_FILEEXIT is replaced at compile time by the number 108. Using "define"
statements makes the code more readable and decreases the chances of assigning a wrong
identifier to a function.

Each menu function instantiates a type of zFormDialog. MOONLITE handles all
input and output through the use of dialog boxes. This technique allows the end user to
size and move output windows on the monitor to suit their individual taste. There are
eight dialog classes. Each dialog class begins with "C_dIg" to identify it as a class and a
dialog. These classes are examined in the next section.

3. Program Flow

When a user selects a menu item, that item's corresponding class is instantiated
and called. Focus is passed to that class (always a dialog) and retained until the dialog is
closed and deleted. As an example of program flow, we will trace the flow of the menu
selection RUN|SPOTDATA.

When a user initially rans MOONLITE, the program places itself in memory and
attempts to read a file called moonlite.dat. If that file is not found, MOONLITE presents
a warning message to the user telling them that the data file was not loaded. If the file
was found, MOONLITE loads the locations stored in moonlite.dat into a linked list. This

24

ﬁr

linked list is passed to all of the dialogs from this point on in the program. Each dialog
requires that the user select a location for which they would like output. Using a linked
list allows a (theoretically) unlimited number of locations to be stored by
MOONLITE.[10]

Once MOONLITE is initialized, it waits for the user to generate an event. In this
case we will assume that the user points to the menu item RUN and selects the member
item SPOTDATA. From code segment (6) we see that menu item
ID_RUN_SPOTDATA is associated with event handler MenuFrame::Spotdata.
MenuFrame::Spotdata is comprised of the following code:

MenuFrame::SpotData(zCommandEvt *ce) ®)
‘routhu Sengine = new routines(ll);
enginc->spotdatal),
delete engine;
}m\(l);

MenuFrame::Spotdata creates a new object of type routines, and assigns a pointed
named "engine” to point to that object. Notice that "1I" the linked list of locations was
passed to the class "routines” as part of the constructor. Once the class is instantiated as
an object, the object is sent the message "spotdata”.

The code associated with routines::spotdata is shown in code segment (9).

romine:::spoulmo o)
C_dig_spotdata *dig_spot = ncw C_dig_spotdata(ll, zZResld(SPOT_DETAIL));
delete dig_spot;
}

Here again, this object creates a new object of the type C_dlg_spotdata. This is
our dialog and the location where MOONLITE will interact with the user. Since
C_dlg_spotdata always accomplishes the same task, the bulk of the user task is included

in the constructor of the class and is automatically executed.

25

The code for C_dig_spotdata is too lengthy to list here, but it is included in
Appendix B. C_dlg_spotdata creates a dialog box with the necessary controls to prompt
the user for the required input. It also contains read only controls for the display of
output.

Like the main application, the dialog box for C_dlg_spotdata is event driven.
Once instantiated, it waits for the user to generate an event. Assuming that the user
wishes to continue with the spotdata, he or she will (in any order) select a location, a date,
and a time. Each time an event is gencrated, C_dlg_spotdata examines the event and
takes action on it. If the user selects a location, the dialog updates its internal variables
with the data from the selected location.

The dialog has built in error reduction. A user may only choose the options that
are available. He or she may not input anything from the keyboard. For example, the
months of the year are presented to the user in a pulldown selection box. The user may
only choose one of the twelve months. Once the user selects one, the dialog will analyze
the choice and change the remaining dialog boxes to reflect that choice. For example, if
the user selects "January”, the dialog will change the possible selections of the day to
include 31. If the user selects "February", the dialog will check the year to see if itis a
leap year and present the appropriate number of days for the user to select. This pseudo
real-time error checking reduces the number of errors a user can create. If a user should
select the 29th day of February and later change the year to one that was not a leap year,
MOONLITE will clear the day selected and highlight the day control to indicate to the
user that they must select a new day.

Once the user selects a location, MOONLITE will compute the desired data on the
fly each time the user changes a control. MOONLITE accomplishes this by examining
the complete data set of the dialog box each time the user generates an event. Actually,

26

MOONLITE waits until the user completes an event, but to the user that is invisible. If
the dialog is complete, i.c. the minimum number of controls to produce meaningful
results have been selected and properly activated, MOONLITE instantiates the algorithm
and passes the data to the new instantiation. When the algorithm returns the data,
MOONLITE passes that data to the dialog's read-only controls for display.

When the user selects the DONE button, MOONLITE backs out of each class
calling its destructor and freeing any memory used by that class. At this point
MOONLITE is again in its initial state and waits for another event.

By designing MOONLITE to always return to its initial state, memory
requirements are kept to a minimum. MOONLITE does not "hold" any memory aside for
data storage or for computations. All memory requests are dynamic with the current
event. MOONLITE was written to reduce its memory requirements after every operation
for several reasons. First, when operating in a multitasking environment, MOONLITE
ensures a maximum amount of memory available to the other processes. Second, when
operating in a single task environment such as DOS, it is possible to overlay different
class instantiations and therefore allow MOONLITE to operate in a much smaller
memory area. MOONLITE therefore has a minimum impact on multitasking systems
such as Microsoft windows™. (7]

4. Calendar Optimization
One of the most used functions of LITELEVL, and thus of MOONLITE is the
planning calendar. The planning calendar presents the user with a graphical
representation of illuminance levels for an extended duration. A typical request for the
calendar option is to print the illuminance levels for a specific location from sun set to
sun rise every night for a six month period. Calculating the calendar is the most

27

processor intensive procedure MOONLITE must accomplish. The old LITELEVL
program frequently took more than a minute to compute one line of the calendar. One
line corresponds to one nights worth of data. Inspection of the LITELEVL code reveals
that besides using time consuming GOTO and GOSUB statements, the program used a
brute force method of computing the calendar line.

LITELEVL attacked a planning calendar line in the following fashion: First, it
computed the daily events for the current day. Then it computed the illuminance every
ten minutes from 1700 until 0800 the next day, 82 points total. It then computed the
daily events for the next day.

MOONLITE uses a more dynamic approach to the problem. MOONLITE first
calculates the daily events for the current day. This calculation results in the sun rise, sun
set, moon rise, and moon set. Using this data, MOONLITE compares the sun set time to
the moon rise time. If the moon rises after the sun sets, MOONLITE automatically fills
in the calendar line with the appropriate symbols to show that either the sun was still
above the horizon or that the moon had not yet risen. If the moon rises after midnight
MOONLITE fills in the entire first half of the calendar line with the symbol for the moon
having not yet risen. If the moon rises before midnight, MOONLITE fills in the symbol
for moon not risen up to the time of moonrise. From this point until either moon set or
sun rise, MOONLITE uses a modified binary search algorithm to determine the state of
illuminance.

Aviators only wish to know four conditions on a planning calendar: the sun is
above the horizon, the moon is below the horizon, the sun is below the horizon and the
illuminance is below a threshold, or the sun is below the horizon and the illuminance is
above a threshold. Once the moon has risen, MOONLITE computes the illuminance for
the first period. MOONLITE allows the user to select the period between calculations.

28

LITELEVL only calculated at ten minute intervals. MOONLITE then jumps four
blocks forward and calculates the illuminance. If the illuminance results in the same
category as the illuminance four blocks prior, MOONLITE fills in the sandwiched
intermediate blocks with the same symbol. If the illuminance results in a different
category, MOONLITE jumps back two blocks and computes that illuminance symbol. If
the symbol is the same as the first symbol, MOONLITE fills in the second block with the
same symbol and computes the third block. If the symbol is different from the first
symbol, MOONLITE computes the second block. MOONLITE then compares the
second block to the fourth block. If they are the same, if fills in the third block. If they
are different, if computes the third block.

Using this jump and evaluate method, similar to a binary search, MOONLITE
dramatically reduces the amount of calculations needed for each line of the calendar. At
a minimum, if the moon never rises, MOONLITE will make no illuminance calculations
and two daily event calculations. On the average, MOONLITE appears to make
approximately seven illuminance calculations per calendar line.

Since both LITELEVL and MOONLITE make two daily event calculations per
calendar line, we can compare the illuminance calculations for a rough indication of
output speedup between LITELEVL and MOONLITE. LITELEVL always makes 82
calculations per line. Thus MOONLITE is 82/7 as fast as LITELEVL, or accomplishes a
speedup of a little over eleven times the output speed of LITELEVL.

MOONLITE also enjoys a performance increase from the use of Borland's C++.
The C++ language is an extremely terse, compact, and efficient language. Borland's C++
compiler uses a number of optimization techniques such as common subexpression
elimination, copy propagation, and invariant code motion to further increase the runtime
efficiency of the code. The final version of MOONLITE will be available in processor

29

specific versions which will optimize MOONLITE for use on that processor. The
processor specific versions will take advantage of optimization techniques such as
strength reduction and branch offset optimization. [5]

Figure 5 shows a single line from the planning calendar for a location at 36
degrees, 35.2 minutes north, 121 degrees, 50.6 minutes west on the 4th of November,
1993 with an offset of eight hours from Greenwich mean time. Figure S illustrates the
order in which MOONLITE would analyze the example calendar line. Even though
MOONLITE uses ten calculations on this line, it is still far faster than LITELEVL which
calculates 82 points.

The jump MOONLITE makes between calculations nine and ten deserves
explanation. MOONLITE compares every point prior to midnight to the point at
midnight. As soon as there is a match, MOONLITE fills in the symbols and jumps to the
first block after midnight. MOONLITE compares every point after midnight to the last
point prior to sun rise. Again, as soon as there is a match, MOONLITE fills in the
symbols between the two points. In our example, the symbol just after midnight and the
symbol just prior to sun rise match, therefore MOONLITE fills and finishes.

From this example one can see that MOONLITE must make more calculations
when the moon is most dynamic and fewer calculations when the moon is fairly static.
The moon is most dynamic relative to the higher latitudes. Above sixty degrees north or
south latitude, the moon could rise and set many times during a night. Indeed, at the pole,
the moon could "hover" right on the verge of rising and setting.[9] Because of the ill-
conditioned behavior of the moon at high latitudes, MOONLITE only uses this pseudo
binary search routine with the fast algorithms at latitudes less than sixty degrees.

30

o DYy] 2y seimm FIIINOON

bbbbbbbbbb

HHHHHIHH I

/
/
/
/

/

HIOXHEHEHI RN 0L SOLT LITZE Aox b
b 10 11 o s shwm

0022 001Z 000 OO6T O0OST OOLT Jum Wg wooN of

Figure 7. An example of MOONLITE's pseudo binary search algorithm

31

VIL. FUTURE WORK NEEDED / UPGRADES

A. FUTURE WORK NEEDED

MOONLITE is not fully complete at this time. Although functional, some menu
options and button choices are not activated. Per an agreement with the Naval Air
Warfare Center in Warminster, Pennsylvania, the author will continue to work on the
MOONLITE project at his next duty station to complete the MOONLITE project.

The following items need to be completed:

. Write PAGE SETUP routines

. Write PRINTER SETUP routines

. Write PRINT function

o Activate EDITICOPY to allow copying data to Windows clipboard
o Activate context sensitive help

. Implement accurate algorithms

With the exception of implementing the accurate algorithms, all of the items
remaining to be completed are dependent upon cross-platform considerations. For
example, the PAGE SETUP, PRINTER SETUP, and PRINT routines can all be
implemented using a single windows call each in Microsot Windows™. When
MOONLITE is ported to Microsoft DOS™, however, these calls will not be available.
The author is awaiting receipt of DOS libraries prior to writing these routines to ensure
their ability to compile both under Microsoft Windows™ and Microsoft DOS™.

32

B. FUTURE UPGRADES

During the design phase of MOONLITE, numerous Marine Corps and Navy pilots
were queried regarding their desires in a program such as MOONLITE. From their
responses, a list of future enhancements is proposed.

e Allow Dynamic Data Exchange from MOONLITE

e Add an option to print a graphical representation of moon azimuth and
altitude versus time.

e Compile MOONLITE for use on the Apple Macintosh™.

33

A

APPENDIX A: USER'S MANUAL

Introduction

Welcome to MOONLITE!

MOONLITE is a computer program that predicts the normal daily
celestial events such as sunrise, sunset, moonrise, moonset, and the
phase of the moon. Additionally, MOONLITE calculates the
amount of light being cast upon the surface of the earth from the
sun, moon, and stars.

This initial release of MOONLITE is written to run within
Microsoft Windows4. Depending on the need for such versions,
future versions of MOONLITE may run on Microsoft DOS™, on
the Apple Macintosh™, and on UNIX-based workstations under
MOTIF. Users of MOONLITE will experience a familiar
interface regardless of which platform they use.

MOONLITE is distributed on a single 32", 1.44 Megabyte
diskette and requires Microsoft Windows# version 3.0 or higher to
run.

MOONLITE was developed at the United States Naval
Postgraduate School in Monterey, California by Captain Michael
T. Lester with advice and guidance from Doctor Douglas J. Fouts
and Doctor Paul M. Janiczek.

34

Questions regarding the programming or operation of
MOONLITE, reports of bugs (I hope not!), or suggestions for
future enhancements may be sent via E-mail to

“moonlite@ece.nps.navy.mil”.

I have endeavered to make MOONLITE as user-friendly and
efficient as possible and hope you enjoy its use.

35

MOONLITE is a completely new product!

The following is a list of MOONLITE's new features:

Runs under Microsoft Windows

Graphical User Interface

Stores locations for future use

Optimized

Variable time periods in Calendar and Position Chart

MOONLITE runs under Microsoft Windows. By writing
MOONLITE to run under Windows we were able to take
advantage of Window's Graphical User Interface (GUI) assuring
you, the user, the most intuitive, easily used interface available.

MOONLITE's Graphical User Interface takes advantage of pull-
down menus, dialog boxes, hot-key activation, and window sizing.

MOONLITE allows the user to store a virtually unlimited number
of locations for future use. Multiple data files may also be used.

MOONLITE is optimized. MOONLITE is based on the same
algorithms used by LITELEVL and SLAP, but they have been
optimized and implemented in a way that ensures the fastest most
accurate data available from these algorithms. MOONLITE was
written using the most modern programming techniques which has
resulted in a response time that is ten times faster than the old
LITELEVL program.

36

Whats Not New!

MOONLITE uses the same algorithms as Litelevl and SLAP.

The output of the Position Chart and the Planning Calendar are
unchanged. This was a conscious design decision. We believe that
most users of MOONLITE are so familiar with the output of
Litelevl that changing the format would be counter-productive.

37

MOONLITE is distributed on a single 3%”, 1.44 Megabyte
diskette. The disk contains the following four files:

1. MOONLITE.exe The MOONLITE program

2. MOONLITE.dat A data file of pre-loaded geographic
locations

3. MOONLITE.doc A Winword copy of this document

4. Setup.exe The MOONLITE setup file

Instailing MOONLITE on your Hard Drive

1. Start Microsoft Windows.

2. Place the MOONLITE diskette in the disk drive.

3 Open the “Main” Group by double clicking on the group
entitled “Main” in the Program Manager.

4. Open the File Manager by clicking on the file manager icon
in the Main group.

5. Click on the appropriate drive letter for your machine. On
your machine, it may be drive A or drive B.

6. Double click on the file entitled “setup.exe” in the drive
window.

1. Choose the menu option FILE | RUN from the Program
manager

2. Type in “A:\setup.exe” or “B:\setup.exe” depending on
which drive your MOONLITE diskette is in.

38

Setup

m
e
D e ——

MOONLITE'’s setup program will perform the following tasks:

1. Create a directory on the C: drive called “MOONLITE"

2. Copy the files from the A: (or B:) drive to the newly
created directory

3. Create a program group called MOONLITE

4. Place an icon for the MOONLITE program in the
MOONLITE group

39

Running MOONLITE

From the Hard Drive

After installing MOONLITE using the Setup program as described
above, MOONLITE may be run by double clicking on the
MOONLITE icon.

From Diskette

MOONLITE may be run from a floppy diskette although loading
time will be greatly reduced if the executable file,
MOONLITE.exe, is placed on your hard drive.

To run MOONLITE from the diskette:

Start Microsoft Windows.

Place the MOONLITE diskette in the disk drive.

Open the “Main” Group by double clicking on the group

entitled “Main” in the Program Manager.

4 Open the File Manager by clicking on the file manager icon
in the Main group.

5. Click on the appropriate drive letter for your machine. On
your machine, it may be drive A or drive B.

6. Double click on the file entitled “moonlite.exe” in the drive

window.

ball h e

1. Choose the menu option FILE | RUN from the Program
manager

2. Type in “A:\moonlite.exe” or “B:\moonlite.exe” depending
on which drive your MOONLITE diskette is in.

Tutorial

MOONLITE was designed to be as intuitive and user friendly as
possible. When you first start MOONLITE you will be presented
with the main MOONLITE screen seen below.

MOONLITE has five main menu choices: File, Edit, Locations,
Run, and Help.

Unlike MOONLITE’s predecessor, LITELEVL, MOONLITE
allows the user to store geographic locations for future use. As a
matter of fact, MOONLITE demands that the user load a location
prior to use. This feature saves the user from looking up the
latitude and longitude over and over every time they run the
program. It also ensures that the user receives the data for the
same latitude and longitude once they select a location.

When MOONLITE is first started, it looks for a file called
“MOONLITE.dat”. This file contains the geographic locations
that have been previously stored in MOONLITE. There is
theoretically no limit to the number of locations a user can store.
The maximum number of locations a user can store is determined
by the amount of memory the user has available. If MOONLITE
can not find the data file, it warns the user that the data file is not
found.

Moonlite.dat not found.

If you see this warning, it means that the file “moonlite.dat” was
not located in the default directory nor in your current path. By
clicking on the “OK” button, MOONLITE will continue to load
and run.

In order to allow the user to maintain geographic locations in
logical groups, MOONLITE allows the use of of many data files
although only one file may be in use at any time. By pulling down
the FILE menu from the main MOONLITE screen, the user may
choose to open a new data file or save a current data file.

For the time being, we will assume that the default data file
“moonlite.dat” was loaded when MOONLITE was first started.

42

Il

Since there are a number of locations pre-loaded with the
MOONLITE program, we can proceed directly to the RUN menu
to get our first results.

Clicking once on the RUN menu displays the output options that
arc available from MOONLITE. Lets find out when the Daily
Events take place today. Click on the option “Daily Events”.

MOONLITE now displays the dialog box for daily events. This

dialog box is used both for you to tell MOONLITE what data you
would like, and for MOONLITE to display that data for you.

Oosusiption Ow { JP
I =~ B B O
sSUN —— HoOoN ————
-] e] || BT e
el] e] pll I R
Omtge [sie]
Moming Ciuil talight bogine: [5000 | Evening Cvil Twltight Eade: (5000 |
I . .

To determine the Daily Events, MOONLITE Needs to know the
location and the date for which you desire data.

By clicking on the arrow to the right of the box entitled
“Description”, the one with “[Choose Location]” in the box,
MOONLITE will display a list of the currently loaded locations.
For this example, click on the location entitled “CA: Monterey”.
You can see that as soon as you made your selection, MOONLITE
started giving you data. Right now, that data is for January 1, 1986
since that is the default date. By choosing the date the same way
we chose the location, by clicking on the arrow on the right side of
the combination box and selecting one of the options from the list,
we can view data for any date within MOONLITE’s operating

range.

HINT: Combination boxes can be activated by clicking anywhere
on the box, not just on the arrow on the right side.

g

For our example here, choose June 16, 1994. As you finish
selecting the last parameter, MOONLITE has already updated the
information and is displaying it in the lower half of the dialog box.

In this case, the Daily Events dialog looks like this:

~

Dus ©® Loce
e B E N BN O
sSUN R MoON R
os: sem] e oo finz_] e @7]
B Anwse: (77] S fomi] e @)
Depliont
Moming Civil tuligit dogies: [o0i8__] Evening Civil Tudight Endle:
Mariog Neticn) Tulight Segies: (5305] Eveniag Nasticn Tultght tade:
R . L

Here in one easy to read dialog box we can see the location for
which we desired data, the date for which we requested the data,
and the data itself.

If you wish a print out of this data, you simply click once on the
“Print” button on the bottom of the dialog box. For now, we want
to explore some other parts of MOONLITE, so click on the “Done”
button to return to the main MOONLITE screen.

Let's select the next option without the use of the mouse. You will
notice that all of the menu options have one letter underlined. This
letter indicates the “hot-key” which will activate the menu. By
pressing down the “Alt” key and the letter that is underlined at the
same time, we can activate the menu.

Press the “Alt” key on the keyboard and while continuing to hold it
down, press the “R” key. Now let go of both keys.

You can see that the RUN menu was activated. You will also
notice that each menu option inside of the RUN menu also has a
hot-key associated with it. Since we already have the menu’s
attention, we don’t need to use the Alt key this time, we only need
to press the letter of the option we want. We have already looked
at the Daily Events, so lets look at the Spot Detail this time. Since
“S” is underlined in the “Spot Data” option, press the “S” key.

44

15—
]

MOONLITE has responded by bringing us to the Spot Data dialog
box. This dialog box is similar to the Daily Events dialog box, and
we will tell MOONLITE what data we want in the same way.

Lets look at the spot data for Montery, CA on August, 21, 1994 at
9:00 O’clock in the moming.

Choosing the location is done the same as it was in the Daily
Events dialog box, so is choosing the month. When we try to
choose the 21st day, however, we see that the selections only go to
16. We need to scroll the choices down to reach the other dates.
We can do this by clicking anywhere below the position box on the
scoll bar on the right side of the choices, or we can scroll one
choice at a time by clicking on the down arrow on the bottom of
the scroll bar.

But wait a minute! We weren’t going to use the mouse this time,
right? You can still enter all of the information. You will notice
that the Location combination box is highlighted right now. That
means that it is active and that keystrokes entered on the keyboard
will affect that control. Since we want to look at “CA: Monterey”,
you can press “C” to have MOONLITE jump to the first choice
that begins with “C”. Since that isn’t the choice we want, use the
down arrow on the keyboard to scroll through the other options.

When “CA: Monterey” is highlighted, we can move to the next
contol by pressing the tab key. When you pressed the tab key you
notice that the focus shifts to the Month box. If you want to go
back to the description box, press “alt-tab”.

We enter the desired time in the same fashion.

After we are done, the Spot Detail dialog looks like this:

Oescription

R RN SN o

Asimet (do8) (2019 | [Asimets (dog) (1678 |
Ahtada (dog) [0 | Adiude (dog) [0 |
Prase) (385]

Total Mumisencs (See + Moos):

Just as in the Daily Events, we can press the “Print” key to get a
printout of our data; we can select other dates, times, or locations;
or we can press the “Done” key to end this event.

Go ahead and press the “Done” key. We have more exploring of
MOONLITE to accomplish.

What happens if the location for which we desire data isn’t in
MOONLITE’s database?

That is easy! We just add it!

From the main MOONLITE Screen, choose the Locations menu
option. The locations menu allows you to Add, Edit, or Delete a
location from MOONLITE'’s database.

Let’s add a location by selecting “Add” from the menu.

MOONLITE presents the Add Location dialog box to allow us to
add our location.

Description GMT Offset

I I (X |

Dagrees Minutes
Latitude [0 | (0000 | ®N Os

Longitude 'ﬁ-n——-] [mﬁ O @w

&3 Contorms to Daylight Savings

(I I

Here we need to fill in an english description of the location, how
many hours the location is offset from Greenwich Mean Time, the
location's latitude and longitude, and whether or not this location
uses daylight savings time.

The first item we need to enter is the name of the location we are
adding. The DESCRIPTION box should already be highlighted.
If it is not, we can move to it by pressing TAB to move to the next
box, or SHIFT-TAB to move to the previous box. When the
Description box is highlighted, type the location "Test Location".
We will use this location just to demonstrate. When you are done
typing, press TAB to move to the next field.

The GMT Offset box in MOONLITE allows you to enter a number
with a decimal point. This is useful if the location you are adding
does not conform to the hourly standard. For example, some
places in Norway are offset from Greenwich Time by 45 minutes.
If this were the case, you would enter 0.75 for the GMT Offset.
For most locations, though, you will enter a whole number. Let's
assume that "Test Location" is located in California. California is
offset eight hours from Greenwich Time, so we will enter an "8.0"
in the GMT Offset box and press TAB to move to the next field.

In the Latitude and Longitude boxes values are entered in degrees,
minutes and tenths of minutes. If you have a location specified by
minutes and seconds, you will have to convert to minutes and

]
47

tenths of minutes. This is a simple conversion accomplished by
dividing the number of seconds bu 60. The answer is tenths of a
minute. For example, assume a location of 43° 20' 30". This
should convert to 43° 20.5'.

The last field of the Add Location Dialog Box is one entitled
"Conforms to Daylight Savings Time." By checking this box,
MOONLITE will add one hour to all input and output times when
a corresponding box entitled "Use Daylight Savings Time" is
checked on the Spot Data, Position Chart, Planning Calendar, or
Daily Events dialog boxes. If this box is not checked, then even if
you check the "Use Daylight Savings Time", the time will not be
incremented. In this way, you may tag "Use Daylight Savings
Time" when Daylight Savings is in effect and know that only those
locations that conform to Daylight Savings will be affected.

After you have finished filling out the dialog it will look like the
one below. If you are satisfied with the entries, press "Save" to
save this data. If any of the numbers you have entered are outside
of allowed parameters (for example, a latitude greater than 90
degrees), MOONLITE will warn you that an entry was not allowed
and return you to the field that was in error.

Your dialog box may look slightly different depending on what
numbers you input for the latitude and longitude of your "Test
Location".

Description GMT Offset
{TEST LOCATION] |ee |

Degrees Minutes
Latitude |32 | [1450 | @N OS
Longitude 121 | [10.2p | O @w

X contorms to Daylight Savings

I IS

48

We should point out here that the Test Location you just entered is
only stored in memory. It has not been saved to the disk yet. If
you try to quit MOONLITE or open a new location file, you will
receive a warning from MOONLITE that your locations have
changed. MOONLITE will give you the opportunity to save your
changes or to discard them before continuing.

If you want to save the location you just entered, you can use the
menu option FILE|SAVE to save all of the locations currently in
memory to the default file moonlite.dat. If you wish to save the
locations in a different file, you can use the menu option FILE |
SAVE AS. SAVE AS allows you to specify a file name and
directory for your data file.

At the time this manual was written, the Position Chart and
Planning Calendar are not fully implemented. Descriptions of their
operation will be added after completion.

49

]
The File Menu

The File menu contains options for opening and saving location
data files, seting up printer options, printing, and for closing the
MOONLITE program.

The File menu looks looks like this:

Save gs...

Print...
Page setup...
Printer setup...

Exit

File | New

This option is used to create a new locations data file. The new
location data file will be empty. See LOCATIONS|ADD to learn
how to add locations to a data file.

File | Open

This option is used to open an existing locations data file. When
you select this option, you will be presented with a Windows file
selection dialog box. When you have selected a data file,
MOONLITE will open that file and read the locations into
memory.

File | Save

This option is used to save the locations presently in memory to the
hard drive or floppy disk. Selecting this option causes
MOONLITE to overwrite the file that is currently in use. For
example, if MOONLITE is using moonlite.dat for a data file and
you have added locations, then selected FILE|[SAVE, MOONLITE
will overwrite moonlite.dat with the new locations. All locations
currently in memory will be written to the file. The effect is that
you have just added your new locations to the locations that were
previously stored in moonlite.dat. This is the recommended
method for adding locations to the data file.

File | Save as...

This option is used to save the locations currently in memory into a
file other than the one currently in use. For example, if
MOONLITE is using the file moonlite.dat as a data file, and you
added some new locations and want them saved to a file named
something other than moonlite.dat, you would choose FILE|SAVE
AS.... '

File | Printer setup...

This option allows you to determine the way MOONLITE will
interact with your printer. It allows you to select printers, and to
access their options menu. Using this menu you will be able to
determine print quality and orientation.

File | Exit

This option is used to exit the MOONLITE program. If you have
made any changes to the locations in memory, MOONLITE will

. __________ ________________________________|
51

wam you that your changes are not saved and ask whether or not
you want MOONLITE to save the files for you. You may also
quit MOONLITE by double clicking in the upper-left hand comer
of the main MOONLITE window.

The Edit Menu

The only option available on the Edit Menu is Copy. You may use
this option to copy information displayed in MOONLITE to the
standard Windows clipboard for inclusion in other applications
such as Word processors.

The Locations Menu

The Locations Menu Looks like this:

PAGONT T

Locations | Add

The LOCATIONS|ADD option is used to add new locations to the
list of locations currently stored in memory. MOONLITE will
store a (theoretically) unlimited number of locations and is
constrained only by the amount of memory available. New
locations added via the LOCATIONS|ADD option are not
automatically saved to disk. To save additions you must use either
the FILE[SAVE or FILE|SAVE AS options.

Locations | Edit

The LOCATIONSIEDIT option is used to Edit locations already in
memory. To edit a location stored in a data file on disk, you must
open the file for use, edit the desired locations, and save the file
back to disk.

.
52

Locations | Delete

The LOCATIONS|DELETE option is used to remove locations
from memory. To remove a location from a data file, you must
open the file for use, delete the desired locations, and save the file
back to disk. The LOCATIONS|DELETE dialog box is identical
to the LOCATIONS|ADD and LOCATIONSIEDIT dialog boxes
with the exception that the Save button has been replaced with a
Delete button. You select a location to delete just as you do a
location to edit, buy using the pull-down list box labeled
"Description”.

The Run Menu

The run menu is the heart of MOONLITE. It is here that you will
choose the output you desire and initiate the dialog boxes for the
different Run options. The Run menu looks like this:

_ MOGOGNL T

Spot Detall
Position Chart
p Dally Events

/

Run | Calendar

The RUN|CALENDAR option is probably the most used option of
MOONLITE. You use this option to generate a light level planning
calendar.

This option is not yet fully implemented and will be further
expounded upon when completed.

Run | Spot Detail

The RUN|SPOT DETAIL option is used to access information
about a particular location at a particular time. This option
requires you to choose a location, a date, and a time. It returns the

.
53

azimuth, altitude and illuminance of the sun and moon, the total
illuminance of the sun and moon combined, and the phase of the
moon.

You may choose to look at many different locations, dates, or
times before closing this dialog. Each time you change any
parameter, MOONLITE will recalculate the data on the fly and
display the results. When you are finished with the dialog, click on
the DONE button.

If you wish a print-out of the data, click on the PRINT button.
MOONLITE uses the default printer selected for Windows.

A HELP button is provided should you have any question about
any option or parameter in the Spot Detail dialog box.

Description
[cA MONTEREY B

[Time @ Locel
s W Wi+ 1 e N o:.

Moo - Sen
Atimeth (dog) 2518] Arimts (dog)
ANrade (deg) Adsude (dog) [a13]
Prase) i3]

Run | Position Chart

This option is not yet fully implemented and will be further
expounded upon when completed.

54

Run | Daily Events

nautical twilight.

S [] e]
o-un-t

_
]

The RUNIDAILY EVENTS option is used to access information
about a particular location. The option requires you to select a
location and a date. MOONLITE will respond with the time of
Sunrise, Sunset, Moonrise, Moonset, meridian passage of both the
sun and moon, and the times of the beginning and end of civil and

If you wish a print-out of the data, click on the PRINT button.
MOONLITE uses the default printer selected for Windows.

A HELP button is provided should you have any question about
any option or parameter in the Spot Detail dialog box.

|

Descrigion Date @tacs

[ca wowTEReY W N N o
SUN serdion Paseoge MOON -
Ros foem] Time: Roe [z "] T fim7]

ol ey

i ot i g 55

Evesing Civil Twilight Eads:
Evesing Navtical Twilight Ends: E@

The Help Menu

This option is not yet fully implemented and will be further
expounded upon when completed.

55

APPENDIX B: SOURCE CODE
BITMAP.H

)

i1 Copyright (c) 1994 Michsel t. Lester
#/ Alirights reserved.

"

56

)

CONSTANT.H

”

constants.h
Constants needed mooniite.cpp and sssociated files

#iindef constant_h
#define constant_h

char *‘months{] = {"Jan", “Feb", “Mar”", "Apr”, "May", “Jun"."Jul", “Aug", “Sep", "Oct", "Nov", "Dec", 0};

char *daya28{] = {"01°", 02", "03", "04", "05", "06", "07", 08", “09", “10",
117, 127, 13", "147, "157, "18", "7, "18°, "197, "20",
21, 227, "23°, "24", “2%", "268°, “2T", "28°, 0},

char “days29{] = ("01", 02", "03", 04", 05", 06", "07", "08", “09", 10",
"11°, 12", 13", "14", 15", 16", "17", "18", "19", "20",
"217, 722", "23°, "24", "25°, "26°, "2T", "28", "29", O};

char “days30{] = ("01", "02", "03", "04", "05", 06", "07", "08", "09", "10",
417, 7127, 13", "147, "15°, "16°, 17", 18", "19", 20",
"21%, 722", "23", "24", "25", "28", "27", "28", "29", "30", 0);

char *days31[] = {"01", “02", "03", "04", "05", "06", "07", 08", "09", "10",
41", "12°, *13", “14", "15", "16", 17", "18", "19", "20",
“21°, "22", "23", "24", "25", "26", “27T", "28", "29", "30",
31", 0);

char *years{] = { "1986", 1987, "1988", "1989", "1990", "1981", "1992", "1993", "1994", "1995", 1996",
1997, *1988", "1999", "2000", "2001", "2002", "2001", “2002", "2003", "2004",
“2005", 0}

char *hours{] = { 00", "01", 02", "03", 04", 05", 06", "07", 08", "09",
"10%, "11%, 12", 13", 14", "15", "16", "17", "18", 19",
207, "21°, "22", "23°, "24", O};

char *minutesf] = { "00", 01", 02", 03", "C4", 05", 06", "0T", "06", 09",
"0°, "11°, "12°, 13", "147, "157, *16°, "17°, "18", "19",
"20°, "21°, "22", "23", "24", "25", “26", "2T", “28", "29",
*30%, "31", "32", “33", "34", "35", "36", "37", "38", "39",
lw' .41" .q' -43.' -“.' -“I. .w' -4r' Iw' .w'
.w' '51.. .5?' .53-' I&.' .55.' -w' .sr' Iw' 'sr.

*

char *resolution{] = {"1", "5", "10", "15", 0});

cher *GMToftset]) = { 00", “01°, 02", 03", "04", 05", 06", 07", 08", "0%",
"0, 1%, 12", O);

fSendif //define constant

58

DEFINES.H

/0“..“."“Ot‘t.‘.‘.0‘0“.0O#“‘.“‘O".0‘t#‘t‘..0##‘.#“#.‘#““#‘.‘0
984S

constants.h

Constants needed moonlite.cpp and associated files

SRR L LR R RELE RS RRRBR SRR SRR B H SR A S AR SRR RS LSS S LR A LB E SRR RS S kRS EE RS S

“*.0/

#ifndef defines h

#define CM_POPUPITEM 101

#define defines h

#define TRUE 1
#define FALSE 0
#define MENU_MAIN 100
#define ID_ MENU_POSITION 118
#define ID_MENU_FILENEW 101
#define ID_MENU_FILEOPEN 102
#define ID_MENU_FILESAVE 103
#define ID_ MENU_FILESAVEAS 104
#define ID_MENU_FILEPRINT 105
#define ID_MENU_FILEPAGESETUP 106
#define ID_MENU_FILEPRINTERSETUP 107

#define ID_MENU_FILEEXIT 108
#define ID_MENU_EDITUNDO 109
#define ID_ MENU_EDITCUT 110
#define ID_MENU_EDITCOPY 111
#define ID MENU_EDITPASTE 112
#define ID_ MENU_LOCS_ADD 113
#define ID MENU_LOCS_EDIT 114
#define ID_MENU_LOCS_DELETE 115
#define ID_ MENU_CALENDAR 116
#define ID_MENU_SPOTDATA 117

59

#define ID_MENU_DAILYEVENTS
#define ID_MENU_HELPINDEX

#define ID_MENU_HELPKEYBOARD
#define ID_MENU_HELPCOMMANDS
#define ID_MENU_HELPPROCEDURES
#define [D_MENU_HELPUSINGHELP
#define ID_MENU_HELPABOUT

#define DIALOG_SETTINGS
#define ID_S_BEGINMONTH
#define ID_S_BEGINDAY
#define ID_S_BEGINYEAR
#define ID_S_BEGINHOUR
#define ID_S_BEGINMIN
#define ID_S_ENDMONTH
#define ID_S_ENDDAY
#define ID_S_ENDYEAR
#define ID_S_ENDHOUR
#define ID_S_ENDMIN
#define ID_S_LOCATION
#idefine ID_S_THRESHOLD
#define ID_S_PERIOD
#define ID_S_FAST

#define ID_S_ACCURATE
#define ID_S_LOCAL

#define ID_S_GREENWICH
#define ID_S_PRINT2FILE

#define DIALOG_LOCATIONS
#define ID_L_DESC
#define ID_L_GMT
#define ID_L_LATDEG
#define ID_L_LATMIN
#defineID_ L N

#define ID_L_S

#define ID_L_LONDEG
#define ID_L_LONMIN
#define ID_L_E

#define ID_L_W
#define ID_L_DST

119
120
121
122
123
124
125

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

300
301
302
303
304
305
306
307
308
309
310
311

#define LOCATION_DELETE
#define ID_LD_DESC
#define ID_LD_GMT
#define ID_LD_LATDEG
#define ID_LD_LATMIN
#define ID_LD N

#define ID_LD_S

#define ID_LD_LONDEG
#define ID_LD_LONMIN
#define ID_LD_E

#define [D_LD_W
#define ID_LD_DST

#define EDIT_LOCATION
#define ID_ED_DESC
#define ID_ED_GMT
#define ID_ED_LATDEG
#define ID_ED_LATMIN
#define ID_ED_N

#define ID_ED_S

#define ID_ED_LONDEG
#define ID_ED_LONMIN
#define ID_ED_E

#define ID_ED_W
#define ID_ED _DST

#define SPOT_DETAIL
#define ID_SPOT_DESC
#define ID_SPOT_MONTH
#define ID_SPOT DAY
#define ID_SPOT_YEAR
#define IDC_GROUPBOX3
#define IDC_GROUPBOX4
#define ID_SPOT_HOUR
#define ID_SPOT_MIN
#define ID_SPOT_LOCAL
#define ID_SPOT_ZULU
#define ID_SPOT_MAZ
#define ID_SPOT_MAL

61

400
401
402
403

405

407
408

410
411

500
501
502
503
504
505
506
507
508
509
510
511

601
602
603

605
606
605

607
608

610

#define ID_SPOT_MPR
#define ID_SPOT MIL
#define ID_SPOT _SAZ
#define ID_SPOT _SAL
#define ID_SPOT SIL
#define ID_SPOT_TIL
#define ID_SPOT_PRINT

#define EVENTS
#define ID_EVENT_DESC
#define ID_EVENT_MONTH
#define ID_EVENT DAY
#define ID_EVENT_YEAR
#define ID_EVENT_SUNRISE
#define ID_EVENT_SUNSET
#define ID_EVENT_SUNTIME
#define ID_EVENT_SUNALT
#define ID_EVENT_MOONRISE
#define ID_EVENT_MOONSET
#define ID_EVENT_MOONTIME
#define ID_EVENT MOONALT
#idefine ID_EVENT_AMCIV
#define ID_EVENT_AMNAT
#define ID_EVENT_PMCIV
#define ID_EVENT_PMNAT
#define ID_EVENT_PRINT
#define IDC_GROUPBOX1
#define IDC_GROUPBOX2
#define ID_EVENT_DAYLIGHT
#define ID_EVENT_LOCAL
#define ID_EVENT_ZULU

#define POSITION
#define ID_POS_DESC
#define ID_POS_MONTH
#define I_POS_DAY
#define ID_POS_YEAR
#define ID_POS_BHOUR
#define ID_POS_BMIN
#define ID_POS_DONE

62

611
612
613
614
615
616
617

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722

800
801
802
803
804
805
806
812

#define [D_POS_LOCAL
#define ID_POS_ZULU
#define ID_POS_RES
#define ID_POS_DONE

#define Position_Chart

#define POS_CHART_LATLON
#define POS_CHART_DATE
#define POS_CHART_ARRAY
#define POS_CHART_PRINT
#define POS_CHART_DONE

#define ICON _1

#define DESC_LENGTH

#endif //define constant

63

809
810
811
812

901
902
903

905

30

DIALOGS.H

n

{/ dislogs.h
"

#ifndef dialogs.h
#define dislogs.h

#include "IL.h*
#include "zapp.hpp”
#include “defines.h”
#include "IL.h"

class C_dig_locations : public zFormDialog {
friend class locations_list;
locations_list *1i;
zString _location;
float _lltmin. _lonmin. _GMT;
int_E, _N, _DST,_latdeg, _londeg;
locntion umet data;
zDefPushBution *Ok_Pressed,

C _dig_locations(locations_list *,zZWindow *zResld&);
int doOK();

char *location() { return(char *)_location;};

int find(char *);

5
class C_dig_loc_del : public zFormDialog {

friend class locations_list;
locations_list “1i;

ZString _location;

float _latmin, _jonmin, _GMT;
im_E,_N, _DST _latdeg, _londeg;
loeaﬁon struct data;

node “temp;

zDefPushButton *‘Ok_Pressed;
2ComboBox *Ib_desc;

zintEdit *Latdeg, *Londeg;
zFloatEdit *Latmin, *Lonmin, *UGMT;
zCheckBox *UDST;

zRadioGroup *UEW, *UNS;

C _dig_loc_dei(locations_list *, zZWindow * zResld&, node*);
char *location() { return(char *)_location;};
{bChanged(zEvent),

X
ciass C_dig_loc_edit : public zFormDialog {

friend class locations_list;
locations_-st “I;

zRadioGroup 'UEW *UNS;

__dlg_loc edit(locations_list *, zZWindow *.zResld&, node*);
char *location() { return(char *)_location;};
tbChanged(zEvent *);

2

class C_dig_spotdata : public zFormDialog {

ﬂoatsaz.ulsilmazmalmil mpr, _til;
int _momh. _day, _year, _hour, _min, Iocal
float lo, f, iy, z, h;

intid, im, test;

location_struct data;

zDefPushButton *Ok_Pressed;

zComboBox *ib_desc, “ib_month, *ib_cy, *Ib_year, *Ib_hour, “Ib_min;
zFloatEdit *saz, *sal, “sil, *‘maz, *mal, “mil, “mpr, *til;

zRadioGroup “local;

C_dig_spotdsta(locations_list *.zZResid&),
lichar *location() { retum(char *)_location};
. ibChanged(zEvent *);
class C_dig_Event : public zFormDialog {

locations_list “Il;

float _sr, _sst, _st,_sa, _mv,_ms, _| ‘mt, _ma, _ac, _an, _pc, _pn, _d

65

atilians 75 oY s
< e

Y
class C_dig_Pos : public zFormDialog{

z

By

PR
=

int _month, _day, _year, _hour, _min, _local;
flostlo, f. iy, 2. h;

intid, im, teat;

location_struct data;

chlPuchBulﬁon'Ok Pressed;

zComhoBox‘bduc.'lbmnth'lb_day'lb_yw'lbhour'lbnin
zFioatEdit *sr, *sst, *st, "sa, *my, “ms, *mt, *ma, *ac, *an, *pc, ‘pn, *di;

ZRadioGroup “local;

dlg_Evuu(loutiom list * zZRes|d8);
Iichar *location() { retum(char *)_location;},
ibChanged(zEvent *);

, _mpr, _til;

_mil
int_month, _day, _year, _bhour, _bmin, _ehour, _emin, _local,

Nprint_desc(zTextPane *);
public:
C_dig_Pos(locations_list *, zRes|d&);

int doDone(zEvent *);
tbChanged(zEvent *);

Iclass POS_Show : public Pos_Base {

zPushButton *Ok_Pressed;
zComboBox “array,;

67

FASTAL.H

g

Description: implimentation of Algorithms of Circular 171
input: As shown for sach member function.

Output: reforence variables used for ease of data transfer
Comments:

Michael T. Lester 05 Nov 1983

2 % 5 2 % & ¢ 8 ¢ 8 ¢ 8 o &8

Modified 21 Feb 1994

F, /A atitude, degrees, N=+, E=-

Y, Y ear

IM, IMNonth (01 - 12)

iD, /Day (01 - 31) assumed correct for calendar

float
float
int
int
float Z, /Time format, 0sZulu, 1=local (zone)
float H, IMour, 24 hr format, zulu or local as above
floats saz, /fresult, Sun Azimuth
floats sal, Iiresult, Sun Altitude
floats il liresult, Sun Hluminance
floatdé maz, //result, Moon Azimuth
flosts mal, fivesuit, Moon Altitude
float& mil, I/fresuit, Moon [lluminance
floatd mpr, /iresult, Moon Percentage of Full
floatd til Iiresult, Total llluminance
)%
68

”iiiiiiiiiiiiiif”ﬁi

} 3
#endif /Midefine fastal.h

agrge o

BEREAR

a3

/M.ongitude, degrees, E=+, Wa-
/N.atitude, degrees, N=+, E=-

Y our (HU88)

M, Month (01 - 12)

D, {Day (01 - 31) assumed correct for calendar
IITime format, 0=Zulu, 1=locai (zone)

H, Mours from zulu

Ifresult, Sun Rise

{iresult, Sun Set Time

{iresult, Time of Sun Meridian Passage

/fresult, Altitude of Sun Meridian Passage

/iresuit, Moon Rise

Iresutl, Moon Set

/iresult, Time of Moon Meridian Passage

liresult, Altitude of Moon Meridian Passage

liresuit, Moming Civil Twilight

{iresult, Moming Nautical Twilight

l/result, Evening Civil Twilight

Iiresult, Evening Nautical Twilight
{firesult, length of daylight

69

LL.H

"
#h
"

{1 header file for ll.cpp, the linked list routines for storing the location data.

"
Siindef ¥_h
#define I_h

#inciude "zapp.hpp"
#inciude "defines.h”

struct locstion_struct
{
char desciDESC_LENGTH + 1]
float istdeg;
float latmin;
it NS;
float londeg;
float lonmin;
int EW,
floatGMT;
it DST,;
|3

Ioation_stmel *data;
node “next;

I* Class locations handies all aspects of adding, editing, saving and
returning information from the locations file.
*

class locations_list
{

2Sting datatile;
node “head, “temp_ptr;
int list_dirty;

locations_list();
{I~ocations_list();

int clear();

int save();

int saveas(zWindow *pwin);

70

node* find(zString 8);
int peek_list_dirty() {return list_dirty;};
void reset_pointer({temp_ptr = head;);
\ char* get_next();
Sendif //define iL.h

71

LOCDATA.H

"

/1 ocdata.h

"

#ifndef locdata.h
#define locdata.h

location_struct locdataf] =

{

{"CA: MCAS Tustin", 33,42.2, 1, 117, 48.6, 1, 8, 1.1},

{"CA: NAS Noth isiand”, 32, 41.9, 1, 117, 12.8, 1,8, 1, 1},

{"CA: NAS Miramar”, 32, 52.1, 1, 117,085, 1,8, 1,1},
{"CA: ALF Hunter Ligett (TUSI)", 36, 0.0, 1, 121, 14.0,1,8,1, 1}
¥

#endif //define {ocdata.h

72

MENUFRAM.H

/]

i menuframe.h

"

#ifndef menufram.h
#define menufram.h

#include “zapp.h*

class MenuFrame : public zZAppFrame({
2TextPane* tp;
public:
MenuFrame(zWindow* parent,zSizer* siz, DWORD winStyle,const char* title);
~MenuFrame();
virtual int command(zCommandEwvt *);
int doExit(zCommandEvt *);

73

ROUTINES.H

i
/I routines.h
"

#ifndef routines_h
#define routines_h

#inciude "I.h"
class routines {
private:
locations_list *1i;
public:
routines(locations_list “list_in);
int spotdata();

int event();
int position();

74

B e N T AP AL L
e .

BMPSHOW.CPP

I/}

il Copyright (c) 1982, 1993 inmark Development Corp.
Al rights reserved.

n

#include "zapp.hpp"
#include "bmpshow.h"

W::Wme(m “w, 2Sizer *s):zPane(w,s) {
hrwdhp'- 0
, fileOpen = FALSE;

BmpShowPane::~BmpShowPane() {
if (bmpdisp) deiete bmpdisp;

void BmpShowPane::display(char “name) {
if (bmpdisp) delete bmpdisp;
bmp = new zBitmap(canvas(), name);
bmpdisp = new zBitmapDisplay(bmp);

btmdisweopyfo(mnvas0.0.0.dm.widmo.dm.heigmo.0,0):
canvas()->uniock();

retum 1;

75

DIALOGS.CPP

i
/] dialogs.cpp
I

/I routines for dialogs.cpp
"

#include <string.h>
#include <math.h>
#include <stdlib.h>
#include “constant.h”
#include "dialogs.h”
#include "il.h"
#include “fastal.iv’

C_dig_locations::C_dig_locations(locations_list *all, zWindow *w,zResld& rid)
: zFormDialog(w,rid) {
I = ali;

location = ™,

GMT =0.0;

latdeg = O;

latmin = 0.0;

E=ID_LW

londeg = 0;

fonmin = 0.0;

N=ID_L_N;

DST=1;

Ok_Pressed = new zDefPushButton(this, IDOK);
Ok_Pmssad—>setNoi?fyClid(ed(ﬂlis. (ClickProc)&C_dig_locations::doOK);

new zStringEdit(this, ID_L_DESC, &_location, "/(30)");

new zintEdit(this, ID_L_LATDEG, &_latdeg, "00", FLD_NOTREQUIRED),

new zFloatEdit(this, iD_L_LATMIN , &_latmin, "00.00", FLD_NOTREQUIRED);
new zintEdit(this, ID_L_LONDEG, &_londeg, "000", FLD_NOTREQUIRED);
new zFloatEdit(this, ID_L_LONMIN, &_lonmin, "00.00", FLD_NOTREQUIRED);
new zCheckBox(this,ID_L_DST, &_DST);

new zRadioGroup(this, ID_L_E, ID_L_W, &_E);

new zRadioGroup(this, ID_L_N, ID_L_S, & N);

new zFloatEditithis, ID_L_GMT , & _GMT, 0.0", FLD_NOTREQUIRED);

show();

modal();
}

int C_dig_locations::doOK()
if(1zFormDialog::storeData()
{
zMessage mess(app->rootWindow(),"A Description is Required",”™,MB_OK);

76

setFocus();

}
eise if (_latdeg < 0) || (latdeg >90))
{

zMessage mess(app->rootWindow(),"Degrees Latitude must be between 0 & 90", MB_OK);
setFocus();

}
elseif((_{londeg<0)||(_londeg>179))

zMessage mess(app->rootWindow(),"Degrees Longitude must be between 0 &
179"," MB_OK);
setFocus();

}
eise if ((_latmin < 0) || (_latmin > 59) || (_lonmin < 0) || (_lonmin > 59))
{

zMessage mess(app->rootWindow(),"Minutes of Latitude/Longitude must be between 0 &
59",™ MB_OK);
setFocus();

}
eise if (LGMT < 0.0) || CGMT > 12.0))
{

zMessage mess(app->rootWindow(),"GMT Offset must be between 0 and 12", MB_OK);
setFocus();

}
eise if (I->find(_location))
{

zMessage mess(app->rootWindow(),"This Location is already defined \nPlease select another
name®,
“Duplicate Name!",MB_OK);
setFocus();
}
eise

{
shutdown();
retum(1);

C_dig_loc_del::C_dig_loc_del(locations_list *all, zWindow *w.zResld& rid, node “temp) : zFormDialog(w,rid)
{

= all;

_location =" [Choose Location To Delete]";
_GMT =0.0;

latdeg = 0;

_latmin = 0.0;

_E=ID_LD_W,

londeg = 0;

_lonmin = 0.0;

_N=ID_LD N;

_DST=0;

Latdeg = new zintEdit(this, ID_LD_LATDEG, &_latdeg).

77

}

Latmin = new zFloatEdit(this, ID_LD_LATMIN , &_iatmin, “#¢.###", FLD_NOTREQUIRED);
Londeg = new zintEdit(this, ID_LD_LONDEG, &_londeg);
Lonmin = new zFloatEdit(this, ID_LD_LONMIN, &_lonmin, "¥## #%#¢", FLD_NOTREQUIRED);
UDST = new zCheckBox(this,ID_LD_DST, & _DST);
UEW = new zRadioGroup(this, ID_LD_E, ID_LD_W, &_E);
UNS = new zRadioGroup(this, ID_LD_N, ID_LD_S, &_N);
UGMT = new zFlcatEdit(this,ID_LD_GMT, & GMT, “0.0", FLO_NOTREQUIRED);
Ib_desc = new zComboBox(this,iD LD DESC, & _location);
while (temp != NULL)
{

b_desc->add(temp->data->desc);
temp = temp->next;

}
Ib_desc->add(" [Choose Location To Delete]");
Ib_desc->setToDefault()
Ib_desc->setNotifySelChange(this, (NotifyProc)&C_dig_loc_del::IbChanged);

show();
modal();

int C_dig_loc_del::ibChanged(zEvent “ce)

{
111 have no idea why | have to reset the zString in this place

// but if | don't, it truncates the value to 15 after the
I first neration
_location =
b desc->9etEdnText(_locanon)
node *desired = Il->find(_location);
if (desired)

_latmin = desired->data->latmin;

_latdeg = desired->data->latdeg;

_lonmin = desired->data->lonmin;

_londeg = desired->data->londeg;

_GMT = desired->data->GMT;

_DST = desired->data->DST,;

_E =desired->data->EW + 409;

_N =desired->data->NS + 405;

LatdegosetToDefaulto
Londeg->setToDefault();
UDST->setToDefault();
UGMT->setToDefault();
UEW->setToDefault();
UNS->setToDefault();
Lonmin->setToDefault();
Latmin->setToDefault();
}

}

C_dig_loc_edit::C_dlg_loc_edit(locations_list *all, 2Window *w.zRes|d& rid, node *temp) :
zFormDialog(w,rid) {

78

}

location = " [Choose Location To Edi{]";

GMT'OO

Latdeg = new zintEdit(this, ID_ED_LATDEG, &_latdeg);
Latmin = new zFloatEdit(this, ID_ED_LATMIN , &_latmin, "$##.#¢", FLD_NOTREQUIRED);
Londeg = new zintEdit(this, ID_ED_LONDEG, &_londeg);
Lonmin = new zFloatEdit(this, ID_ED_LONMIN, &_lonmin, "¥¢.###", FLD_NOTREQUIRED);
UDST = new zCheckBox(this,ID_ED_DST, &_DST);
UEW = new zRadioGroup(this, ID D . ID_ED_W, &_E),
UNS = new zRadioGroup(this, ID_| D_ ID_ED_S, &_N);
UGMT = new zFloatEdit(this,ID_| ED MT & GMT *0.0", FLD_NOTREQUIRED),
ib_desc = new 2ComboBox(this, lD ED)_DESC, & location);
while (temp = NULL)
{

Ib_desc->add(temp->data->desc);
temp = temp->next;

}
Ib_desc->add(" [Choose Location To Edit]");
ib_desc->setToDefault();
Ib_desc->setNotifySeiChange(this, (NotifyProc)&C_dig_loc_edit::ibChanged),

show();
modal();

int C_dig_loc_edit::ibChanged(zEvent “ce)
{

I/ | have no idea why | have to reset the zString in this place
/Il but if | don't, it truncates the value to 15 after the
Ilﬁmmnon
_location = "
b dut»getEditTexteraﬁon).
node *desired = [I->find(_location);
if (desired)

{
_latmin = deslrod->dah->latmin.

79

UGMT->setToDefault();
UEW->setToDefauit();
UNS->setToDefault();
Lonmin->setToDefault();
Latmin->setToDefault();
}

}

C_dig_spotdata::C_dig_spotdata(locations_list *all, zResld& rid)

U=l : ZFormDialog(app->rootWindow() rid) {

_location=" [Choose Location J";
GMT =0.0;
__latdog =(;
_latmin = 0.0;
_E=ID_LD W,
londeg = 0;
lonmin =0.0;
N=IiD_LD N;
_DST=0;
Jocal = ID_SPOT_LOCAL,;
day=0;

saz = new zFloatEdit(this, ID_SPOT_SAZ , &_saz, "W¥.##¥", FLD_NOTREQUIRED);
sal = new zFloatEdit(this, ID_! “SPOT_SAL , & _sal, "###.###, FLD_NOTREQUIRED);
sil = new zFloatEdit(this, 1D_! 'SPOT _SIL, &_sil, "WHHHFE I, FLD_NOTREQUIRED);
maz = new zFloatEdit(this, ID SPOT MAZ &_maz, "W, FLD_NOTREQUIRED);
mal = new zFlostEdit(this, ID SPOT MAL. &_mal, " #, FLD_NOTREQUIRED),
mil = new zFloatEdit(this, ID_SPOT_MIL , & _mil, "SasNe. %, FLD_NOTREQUIRED);
mpr = new zFloatEdit(this, ID_SPOT_MPR , &_mpr, “S#####", FLD_NOTREQUIRED);
til = new zFloatEdit(this, ID_SPOT_TIL , &_til, “WHHHHEE ¥, FLD_NOTREQUIRED);

ib_desc = new zComboBox(this, ID_SPOT_DESC, &_location);
i->reget_pointer();

temp_desc = lI->get_next();

while (temp_desc 1= ™)

{
ib_desc->add(temp_desc);
temp_desc = ll->get_next().

Ib_dlw-»dd(‘ { Choose Location J);
Ib_desc->seiToDefault();
Ib_desc->sstNotifySeiChange(this, (NotifyProc)&C_dig_spotdata::ibChanged);

ib_month = new zComboBox(this, ID_SPOT_MONTH, &_month);
Waddcwsmt(monﬂ\s)

lb month->setToDefault(;

ib_month->setNotifySeiChange(this, (NotifyProc)&C_dig_spotdata::lbChanged);

Ib_day = new zComboBox(this, ID_SPOT_DAY, &_day);
b_day->addCharStrings(days31);

b_day->setToDefault(;

b_day->setNotifySeiChange(this, (NotifyProc)&C_dig_spotdata::ibChanged);

80

ib_year = new 2ComboBox(this, ID_SPOT_YEAR, &_year);
lb_y.‘f*lddChUSﬁvm(m)

Ib_year->setToDefault)

b_yewéu(ﬂoﬁfySolcmngo(m (NotifyProc)&C_dig_spotdata::ibChanged);

Ib_hour = new 2ComboBox(this, lD _SPOT_HOUR, &_hour);

lb hour->getToDefault();
ib_hour->getNotifySelChange(this, (NotifyProc)&C_dig_spotdata::ibChanged);

ib_min = new zComboBox(this, ID_SPOT_MIN, & min);
b_maddcmsumninum),
lb _min->setToDefault();

Ib_min->setNotifySeiChange(this, (NotifyProc)&C_dig_spotdata::ibChanged);

local = new zRadioGroup(this, iD_SPOT_LOCAL, 1D_SPOT_ZULU, &_local);
local->setNotifyClicked(this, (NotifyProc)&C_dig_spotdata::ibChanged);
show();

modai();

§

}
int C_dig_spotdata::ibChanged(zEvent *ce)
{

_month = |b_month->selection() + 1;
_day =Ib_day->selection();
year =lb_year->aelechono+1993
_hour = Ib_hour.
_min = mosdedmo
swnch(_momh)
{

case 1.

case 3.

case 5;

case 7;

case 8:

case 10:

case 12:
{
ib_day->reset();
ib_day->addCharStrings(days31);
b_day->setToDefault();
break;
Y

case 4.

case 6:

81

break;
cln)Z:

{
ib_day->reset();
if (vioat(_year/ 4) == (_year/4.0) &&

= (_year / 400.0))
fb_day»addcmrsmrm(m):
eho)
fb_uyawcmsmms(d-ysza):
;b_dly»seﬂ'owo;

float(_year / 400)

}
storeData();
it (co(mplobd())
_location = * -
tb_desc->getEditText(_location);
node *desired = §->find(_location);
if (de{sirod)
_latmin = desired->data->latmin;
_latdeg = desired->dsta->latdeg;
_lonmin = desired->data->lonmin;
_londeg = desired->data->londeg;
GMT = desired->data->GMT,
DST = desired->data->DST,
E = desired->data->EW.
N = desired->data->NS;

lo = _londeg + _lonmin / 80.0;
if (E) o *=-1.0;
f=_latdeg + _latmin / 60;
K{N)f*=-1.0;
if (local == 807) z = TRUE;
else z = FALSE;
fast_sigorithm “aig = new fast_algorithm;
h=_hour* 100 + _min;
aig->Hlum(lo, f, _year+1986, _month+1, _day+1, z, h, _saz, _sal, _sil, _maz, _mal, _mil, _mpr, _til);
saz->selToDefault();
sal->sefToDefault();
sil->setToDefault();
maz->se{ToDefault();
mal->setToDefault();
mil->setToDefault();

. mpr->selToDefault();
til->sefToDefault();
delete alg;

}
}

C_dig_Event::C_dig_Event(locations_iist “all, zRes!d& rid)
N : zFormDislog(spp->rootWindow().rid) {

_location =" [Choose Location I";
_GMT=0.0;
latdeg = 0;
_latmin = 0.0;
E=ID_LD W,
_londeg = 0;
_lonmin = 0.0;
_N=ID_LD N;
_DST=0;
_local = ID_EVENT_LOCAL;
_day=0;
h=0;

sr = new zFloatEdit(this, ID_EVENT_SUNRISE, &_sr, “0000", FLD_NOTREQUIRED);
sst = new zFloatEdit(this, ID_ _EVENT. _ SUNSET, &_sst, 0000, FLD, _NOTREQUIRED);
st = new zFloatEdit(this, ID_EVENT SUNTIME &_st, "0000", FLD_NOTREQUIRED);
sa = new zFloatEdit(this, ID_ _EVENT_ _SUNALT, & sa, "###¥", FLD_NOTREQUIRED);
mr = new 2FloatEdit(this, ID_EVENT _MOONRISE, &_mr, "0000", FLD_NOTREQUIRED);

ms = new zFloatEdit(this, ID_EVENT_MOONSET, &_ms, "0000°, FLD_NOTREQUIRED);
mt = new zFloatEdit(this, ID_EVENT_MOONTIME, &_mt, “0000*, FLD_NOTREQUIRED);
ma = new zFioatEdit(this, ID_EVENT_MOONALT, &_ma, ¥, FLD_NOTREQUIRED);

ac = new zFloatEdit(this, ID_EVENT_AMCIV, &_ac, "0000", FLD_NOTREQUIRED);
an = new zFloatEdit(this, ID_ EVENT AMNAT, & _an, "0000", FLD_NOTREQUIRED);
pc = new zFloatEdit(this, ID_| EVENT _PMCIV, & _pc, "0000°, FLD_NOTREQUIRED);
pn = new zFloatEdit(this, ID_ EVENT PMNAT, & pn, "0000", FLD_NOTREQUIRED);
dl = new zFloatEdit(this, ID_EVENT DAYLIGHT &_di, "0000", FLD_NOTREQUIRED);

Ib_desc = new zComboBox(this, ID_EVENT_DESC, &_location);
H->reset_pointer();

temp_desc = fi->get_next();

while (temp_desc i= ™)

{
lb_desc->add(temp_desc);
temp_desc = §->get_next();

}
ib_desc->add(" [Choose Location J");
b_desc->setToDetault();
Ib_desc->setNotifySeiChange(this, (NotifyProc)&C_dig_Event::ibChanged):

b month = new zComboBox(this, ID_ EVENT_MONTH, &_month);
Mhusuhga(uwu)

nWstoﬁfySdCth (NotifyProc)&C_dig_Event::ibChanged);
i_day = new zComboBox(this, ID_EVENT_DAY, &_day);
th_day->addCharStrings(days31);

Ib_day->sefToDefault();

8

Ib_day->setNotifySeiChange(this, (NotifyProc)8C_dig_Event::ibChanged);

Ib_year = new zComboBox(this, ID_EVENT_YEAR, &_year),
ib_year->addCherStrings(years),

local = new zRadioGroup(this, ID_EVENT_LOCAL, ID_EVENT_ZULU, &_local);
local->setNotifyClicked(this, (NotifyProc)&C_dig_Event::ibChanged);

show():
modsi();

}

int C_dig_Event::ibChanged(zEvent “ce)
(_momh = lb_month->selection() + 1
_dsy =lb_day->selection();

_year = Ib_year->selection() + 1983,
switch (_month)

b_day->reset();
if (float(_year / 4) == (_year/4.0) &&
i= (_year /400.0))
{

)b_wwm):

float(_year/ 400)

if Clocal == 721) z = TRUE;

eise 2 = FALSE;

fast_sigorithm *alg = new fast_algorithm;

alg->event(lo, f, _year+1886, _month+1, _day+1,z, h, _sr, _sst, _st, _sa, _mr, _ms, _mt, _ma,
-8c, _an, _pc, _pn, _di);

sr->setTaDefault();

sst->setToDefault();

st->setToDefault();

sa->setToDefault();

me->selToDefault();

ms->setT N

mt->se{ToDefault();

_DST=0;

_local = ID_POS_LOCAL;
day=0;
fes=2;

h=0;

Done = new zPushButton(this, ID_POS_DONE);
Done->setNotifyClicked(this. (ClickProc)8C_dig_Pos::doDone);

ib_desc = new 2ComboBox(this, ID_POS_DESC, &_location);
#->reset_pointer();
temp_¢ = |l->get_next();
while (temp_desc |= ™)
{
ib_desc->add(temp_desc);
temp_desc = li->get_next();

}
Ib_desc->add(" [Choose Location I');
b_desc->se(ToDefault();
ib_desc->setNotifySelChange(this, (NotifyProc)&C_dig_Pos::IbChanged);

Ib_month = new zComboBox(this, ID_POS_MONTH, &_month);

ib_day = new zComboBox(this, ID_POS_DAY, &_day);
Ib_day->addCharStrings(days31);

ib_day->setToDefauit();

Ib_day->setNotifySeiChange(this, (NotifyProc)&C_dig_Pos::IbChanged);

ib_year = new zComboBox(this, ID_POS_YEAR, &_year);
Ib_yur->addChuSﬁngs(ym).

b_year->setT

Ib_year->setNotifySeiChange(this, (NotifyProc)&C_dig_Pos: :IbChanged);

tb_bhour = new zComboBox(this, ID_POS_BHOUR, & _bhour);
ib_bhour->addCharStrings(hours);
ib_bhour->setToDefault();

Ib_bmin = new 2ComboBox(this, ID_POS_BMIN, &_bmin);

Ib_| _bmin->addCharStrings(minutes);
1b_bmin->setToDefault();

86

ib_res = new zComboBox(this, ID_POS_RES, &_res);
{b_res->addCherStrings(resolution);
Ib_res->setToDefault();

local = new zRadioGroup(this, ID_POS_LOCAL, ID_POS_ZULU, &_local);

local->setNotifyClicked(this, (NotifyProc)&C_dig_Pos::(bChanged);

show();
modal();
)

int C_dig_Pos::ibChanged(zEvent “cs)
{

_month = ib_month->selection() + 1;
~day =b_day->selection();

_year =B_year->selection() + 1993;
switch (_month)

case 16:

case 12:
{
Ib_day->reset();
Ib_day->addCharStrings(days31);
lb_dsy->setToDefault();
break;

Y
case 4.
case 6:
case 9.
case 11:
{
ib_day->reset();
Ib_day->addCharStrings(days30);
_dav->setT 0;

)

case 2.

I(b _day->reset();
if (foat(_year / 4) == (_year / 4.0) 8&
= (_year / 400.0))
fb_d-yé-ddCharsuinq#(M):
m}

{
Ib_day->addCharStrings(days28);

87

float(_year / 400)

}
ib_day->setToDefault():;
}

}
int C_dig_Pos::doDone(zEvent “ce)
{

storeData();
if (compieted()

{
fast_aigorithm *alg = new fast_gigorithm;
location = * °

b_desc->getEdiText(_location);
node *desired = I->find(_location);
swnu(h (ib_res->selection())

case O:

{
delta = 1;

lo = _londeg + _lonmin / 60.0;
if CE) lo *=-1.0;
f=_latdeg + _latmin /80,

88

WT——

f(N)f*=.1.0;
if (local) z = TRUE;
else z = FALSE;

Iitn_data->io = lo;
Irtn_data->f = f;

Ib_month->getEditText(monthstr);
ib_day->getEditText(daystr),
Ib_year->getEditText(yearstr);
r strepy(rtn_data->amay{0],"**SUN & MOON POSITION CHART*™™);
rin_data->array[0] = strdup(temp);
temp = NULL,;
streat(temp, _location);
strcat(temp,(N 7", N" " S

strepy(rin data->army[1] temp);
temp = monthstr;

streat(temp, * *);

strcat(temp, daystr);

strcat(temp, " °);

sircat(temp, yearstr),

streat(temp, * Zulu +7);

gevt(_GMT, 5, trash);

strcat(temp, trash);

strepy(rin_data->array{2].temp);

strepy(rtn_data->array(5],” Sun Sun Lux Moon Moon %Moon Lux");
strepy(rtn_data->amray{7),"Time Azimuth Altitude Illum Azimuth Altitude (Phase) Hium™);
strepy(rtn_data->array{8]," ")

{hogic for producing times

for (count = 0; count <=80; count++, _bmin += delta)

{

if (_bmin >= 60)
{
_bmin =60,
_bhour++;

}
h = _bhour * 100 + _bmin;
alg->illum(lo, f, _year+1983, _month+1, _day+1, z, h, _saz, _sal, _sil, _maz, _mal, _mil, _mpr,

)
if (h >= 2400) h -= 2400;
sprintf(temp, "%04.0f %8.0f %89.0f %13.5f %8.0f %9.0f %9.0f %12.5f", h, _saz, _sal, _sil,

_maz, _mal, _mpr, _ti);

89

strepy(rin_data->array{count+8).temp);
}

'I }
shutdown();
retum 1;

}

"POS_CHART_DLG::POS_CHART_DLG(zResId& rid) : zFormDialog(app->rootWindow(),rid)
{
display_array = new zComboBox(this, POS_CHART_ARRAY);
for (int count = 0; count = 80; count++)
{
;!isplay_my%(amy[count][O]);

*

FASTAL.CPP

7

I File Name: fastal.cpp

I* Programmer: Michael T. Lester

P Created: 05 Nov 1903 Modified: 21 Feb 1994
I* Description: implementation of aigorithms from Circular 171
I* Compiler: Boriand C++ (DOS IDE)

')

#include <math.h> .
#include “fastal.h"

#define sgn(arg) (arg<0 ? (-1) : (1))
#define deg(arg) (floor(arg) + ((arg - floor(arg))*10)/6)
#define dms(arg) (floor(arg) + 6 * (arg - floor(arg))/10)

#define neg56 (-5/6)
#define TRUE 1
#define FALSE 0
void
fast_aigorithm::iium(
float Lo, Mongitude, degrees, Ex+, W=-
float F, /NLatitude, degrees, N=+, E=-
float iy, 1Y ear (HESH)
int M, /Month (01 - 12)
int iD, Day (01 - 31) assumed correct for calendar
float Z, {Time format, 0=Zulu, 1=local (zone)
float H, IMour, 24 hr format, zulu or local as above
ficatd& saz, //result, Sun Azimuth
float& sal, Iiresult, Sun Altitude
floatd sil, /iresult, Sun llluminance
floats maz, /iresult, Moon Azimuth
floaté mal, Iiresuit, Moon Altitude
floats& mil, Ifresuit, Moon llluminance
floatd mpr, //result, Moon Percentage of Full
floats il Iiresutt, Total llluminance
X
RD =57.20578;
DR =1/RD;
CE =0.91775;
SE =0.39715;
A[0] = -0.01454;
A1) = -0.010453;
Al2) = -0.020791;
AJ3] = 0.00233;
F =F*DR;
C =3860;
LI = fabs(LO);
St = sin(F);

91

Cl = cos(F);
J =387 *1Y - floor(7 * (IY + fioor((IM + 9) / 12)) / 4) +
floor(275
*IM/8)+ 1D - 730531;
DT =0,

if 2 == 0) DT = -LO/C;
if (Z == 1) DT = LI - 15 * floor((L! + 7.5) / 15)) / C * sgn(LO);

Z20=)-0.5;

E = (deg(H/100.0)) /24 - DT - LO/ 360;
D =Z0+E;

TO = 280.46 +0.98565 * D;

T =TD - floor(TD / 360) * 360;

#f (T < 10-500) T = T + 360;

TD = 357.5 +0.9856 * D;

G = (TD - floor(TD / 360) * 380) * DR;
LS = (T + 1.81 *sin(G)) *DR;

AS1 = atan(CE * tan(LS)) * RD;

Y =cos(LS);

if (Y < 16-500) AS1 = AS1 + 180;

SD = SE * sin(LS);
DS = asin(SD);

T =T-180;
T=T+3680*E+LO;

for (int N = 1; N <3; N++)
if (N == 2)(
TD = 218.32 + 13.1764 * D;
V = TD - floor(TD / 360) * 360;

if (V < 16-500) V = V + 360;

TD = 134.96 + 13.06499 * D;

Y =(TD - floor(TD / 360) * 360) * DR;
TD =93.27 + 13.22035* D;

O = (TD - floor(TD / 380) * 360) * DR;
TD =235.7 +24.3815*D;

W = (TD - floor(YD / 360) * 3680) * DR;
SB =sin(Y);

CB = cos(Y),

X =gin(0);

S =cos(0);

SD = sin(W);

CD = cos(W);

V =V+(8.29-127*CD+043°CB)*SB+(68+127°CB)*

SD-0.19*sin(G) -0.23* X * S;
V =V*DR;

Y =((5.13-0.17°CD)* X + (.56 * SB +0.17 * SD) * S) * DR;
= gin(V);

= gin(Y);

CB = cos(Y).

Q =CB*cos(V);

P =CE*SV*CB-SE*~™

SD =SE*SV*CB+Ck

AS1=gtan(P/Q) * RD;

62

f(Q <0) ASt1 = AS1 + 180;

DS = asin(SD);
}

H = T-ASY;

CD = cos(DS);

CS = cos(H * DR);

Q =SD*Cl-CD*SI*CS;
P =-CD * sin(H * DR);

AZ = stan(P / Q) * RD;

if (Q < 16-500) AZ = AZ + 180;
if (AZ < 16-500) AZ = AZ + 360;

AZ = floor(AZ +0.5);

H =asin(SD*SI+CD*Ci1*CS)*RD;
Z =H"*DR;

H =H-095*(N-1)*cos(H*DR);
HA=H;

if (H>=(5/6)X
HA = H + 1/ (tan((H + 8.59 / (H + 4.42)) * DR)) / 60;
}

U =sin(HA * DR);

X =753.6616;

S = asin(X * cos(HA * DR) / (X + 1));

M =X * (cos(S) - U) + cos(S);

M = exp(-21 * M) * U +0.0289 * exp(-.042* M) *

(1 + (HA + 90) * U/ 57.20578);
HA = ((floor(fabs(HA) +0.5)) * sgn(HA));

if (N == 1)
IS1=133775*M,;
saz=AZ,
sal = HA;
sil = IS1;

)

eise{
E = acos(cos(V - LS) *CB);

93

P =0.892 * exp(-3.343 / (pow(tan(E / 2), 0.632))) + 0.0344 *

(ﬂn(E) E * cos(E));
P =0418°*P/(1-0.005* cos(E) -0.03 * sin(Z));
iL=P*M;
1St = IS1 + IL +0.0005;
maz = AZ;
mal = HA;
mil = IL;
IL = floor(50 * (1 - cos(E)) +0.5);
mprsiL;
til = mil + sil;
}
}
}
void
fast_aigorithm::event(float LO, /M ongitude, degrees, E=+, W=
float F, /\Latitude, degrees, N=+, S=-
float Y, I ear (#IN)
int IM, IMonth (01 - 12)
int ID, /Day (01 - 31) assumed correct for calendar
float 2, {[Time format, 0=Zulu, 1=local (zone)
float H, /Mhours from zuiu
floatd sr, liresult, Sun Rise
floats sst, firesult, Sun Set Time
floatsk st Iiresult, Time of Sun Meridian Passage
floats sa, liresult, Altitude of Sun Meridian Passage
float: mr, Iiresult, Moon Rise
floaté ms, liresutl, Moon Set
float& mt, Iiresult, Time of Moon Meridian Passage
floaté ma, /fresult, Altitude of Moon Meridian Passage
flosté ac, Iiresult, Moming Civil Twilight
floatd an, {iresult, Moming Nautical Twilight
floaté pc, /iresult, Evening Civil Twilight
floatd pn, Iiresult, Evening Nautical Twilight
floatd di liresult, length of daylight
)
{
RD =57.20578;
DR =1/RD;
CE =0.01775;
SE =0.39715;
A(O]-«001454
A[1] = -0.10453;
AJ2] = -0.20791;
A[3] = 0.00233;
int exit_now = FALSE, exit_n_loop = FALSE;
F =F*DR;
C =360;

LI = fabs(LO);

Sl = oin(F);
Cl = cos(F);
J =387 * [Y - floor(7 * (IY + floor((IM + §) / 12)) / 4) +

*IM/8) +ID - 730831;
DT=0Q;

K({)DT=-L0/C;
(2 == 1) DT = (LI - 15 * floor((LI + 7.5) / 15)) / C * sgn(LO);
Z0=J-0.5;
for(intL=1; L <= 4; L++)
f(lL==4)C=347.81,;
(L ==1)} (L==4
M=05+DT,;
K=1;
while (1) {
exit_now = FALSE;
M -=DT;
E=M-LO/380;
D=20+E;
if (fabs(E) >= 1) E = sgn(E);
TD = 280.46 + .98585 * D;
T = TD - floor(TD / 360) * 360;
(T <0) T += 360,
TD = 357.5 + .9856 * D;
G = (TD - floor(TD / 360) * 360) * DR,;
LS=(T+ 191 *sin(G)) " DR,
AS1 = gtan(CE * tan(LS)) * RD;
Y = cos(L.S);
if (Y < 0) AS1 += 180;
SD = SE * sin(LS);
DS = asin(SD);

Q. ==4)
TD=218.32 + 13.1764* D;
V = TD - floor(TD / 360) * 3680;
K(V<0)V=V+360;
TD = 134.96 + 13.08499 * D;
Y = (TD - floor(TD / 360) * 360) * DR;
TD =93.27 + 13.22035°* D;
O = (TD - floor(TD / 360) * 360) * DR;
TD = 235.7 + 24.3815° D;
W = (TD - floor(TD / 380) * 360) * DR,
S8 = sin(Y);
CB = cos(Y);
X = sin(0);
$ = cos(0);
SD = sin(W);
CD = cos(W);
V+=(829-127*CD+ 43*CB)*“SB+(66+1.27*CB)*

SD-.19*sin(G)-.23°X"*S;
V*=DR;

95

floor(275

Y=((5.13-.17°CD)*X +(56*SB +.17*SD)* S) *DR;
SV = sin(V);

SB = sin(Y);

CB = cos(Y);

Q= CB * cos(V);

P=CE*SV*CB-SE*SB;
SD=SE*SV*CB+CE*SB;

AS1=atan{P/Q) *RD;

if (Q < 0) AS1 += 180;

DS = asin{SD);

}

T+=LO+360*E;

T -= floor(T / 360) * 380;
U=xT-AST1;

if (fabs(l) > 180) U -= 360 * sgn(V);
UsC,

M+=DT-U;

(L < 4) K++;

switch (KX

case 1.
case 3.
case 5
K+,
break;
}

case 2:{
i (M>=0) && (M <)
exit_now = TRUE;
}

M = sgn(M);

K++

if (exit_now) break;
} // while loop
H = asin{cos(F - DS)) * RD;
if (L == 4) H -= 0.85 * cos(H);
HA=H;
if (H >= (neg56))
HA=H + 1/ (tan((H + 8.59 / (H + 4.42)) * DR)) / 60;
YWH(L==1) || (L==4)
H = (A[L-1] - SI * SD) / (CI * cos(DS));
if (fabs(H) > HH=1.5;
olse H=acos(H)*RD/C;
B0]=M-H;
Bli]=M+H;
for(int | = 0; l<=1; l++){
K=2*@1+1)-3;
for int N = 1; N <= 8; N++)}{
exit_n_loop = FALSE;
8{f) = DT;
E =B[l] -LO/ 360;
D=2Z0+E;
if (fabs(E) >= 1) E -= sgn(E);
TD = 280.48 + .98565 * D;
T = TD - floor(TD / 360) * 360;
(T <0) T += 360;
TD = 357.5 + .9856 * D;
G = (TD - floor(TD / 360) * 360) * DR;

LS = (T + 1.91 * sin(G)) * DR;
AS1l= CE * tan(LS)) * RD;
Y = cos(LS);
if (Y < 0) AS1 += 180;
SD = SE * sin(LS);
DS = asin(SD);
T -= 180;
if (L == 4){
TDO=218.32 + 13.1764 * D;
V = TD - floor(TD / 360) * 360;
if (V < 0) V += 380;
TD = 134.96 + 13.08499 * D;
Y = (TD - floor(TD / 380) * 380) * DR;
TD = 93.27 + 13.22935° D;
O = (TD - floor(TD / 380) * 360) * DR;
TD =235.7 + 24.3815* D;
W = (TD - floor(TD / 360) * 360) * DR;
SB = sin(Y);
CB = cos(Y);
X = sin(0);
S = cos(0);
SD = sin(W);
CD = cos(W);

V+8(8.29-1..27"CD+.43'08)'88+(.06+1.27'08)'

SD-.19*8in(G)-.23*X"*S;
V*=DR;

97

Y=((513-.17*CD)*X +(56*SB+.17*SD)*S) *DR;
SV = gin(V);
S8 = sin(Y);
CB = cos(Y);
Q=CB *cos(V);
P=CE*SV*CB-SE*SB;
SD=SE*SV*CB+CE*SB;
AS1 = atan(P/ Q) * RD;
if (Q < 0) AS1 += 180;
DS = asin(SD);
} M (L == 4)
T+=LO+360*E;
T -= floor(T / 360) * 360;
U=T-AS1;
if (fabs(U) > 180) U -= 380 * sgn(U);
U/=C,
H = (AfL-1] - SI * SD) / (C * cos{DS));
if (fabs(H) > 1) H= 1.5;
eise H = acos(H) *RD /C;
Blij+=K*H-U+DT;
if (L <4) N++;
switch (NX
case 1:
case 3.
case 5:(
break;
}

case 2:;
if ((B[1] >= 0) && (B[] < 1)}
exit_n_loop = TRUE;

}
eise B{l] -= sgn(B[1]):
break;

}

case 4:{
it BT} >= 0){
exit_n_loop = TRUE;
}

break;
}

case 6:{
exit_n_loop = TRUE;
break;

}
} /lswitch
if (exit_n_loop) break;
} //N for loop
} /N for loop
switch (L){
case 1:{

98

R = floor(100 * dms(M * 24) + .5);
st=R;
HA = floor(fabs(HA) + .5) * sgn(HA);
s = HA;
for(intt=0; | <= 1; l++){
R = floor(100 * dms(B[l] * 24) + .5);
:ag’((”m) il (R <0)) break;

srsR;
continue;
}
else {
sst=R;

} .
R = B{1] - B{0};
(R <0) R++;
R = floor(100 * dms(R * 24) + .5);
di=R;
} /A for loop
break;
}/ case 1
case 2:{
for(inti =0; | <= 1; I++){
R = floor(100 * dms(B[l] * 24) + .5);
if ((R >= 4800) || (R < 0)) break;
if Q)
ac=R;
else
pc=R;
} # for loop
break;
Y/ case 2

case 3: {
for(inti=0;1<=1; l++){
R = floor(100 * dms(B[i] * 24) + .5);
if ((R >= 4800) || (R < 0)) break;
i
an=R;
elss
pn=R;
} /1 for loop
break;
}//case 3

case 4: {
R = floor(100 * Zms(M * 24) + .5);
mt=R;
HA = floor({ fabs(HA) + .5) * sgn(HA);
ma=HA;
for(intl=0;1<=1; ++)}
R = fioor(100 * dms(B{l] * 24) + .5);
if ((R >= 4800) || (R < 0)) breek;

99

()
mw=R;

else
ms=R;

} /! for loop
}/ case 4
} /1 Switch
}// L loop
} ifmain

,0
char* fast_aigorithm::calendar(int b_day, int b_mo, int b_yr,
int o_day, int 8_mo, int &_yr,

float lat, float lon, int Z,
float thresh, int delta){

{} intdays; /M of days data is requested for
intJB, JE; //Julian for Begin and End of requested period respectively
char “matrix; // pointer to the calendar matrix

1/ compute # of days requested
JB = 367 * b_yr - floor(7 * (b_yr + floor((b_mo + 9) / 12)) / 4) +
floor(275*b_mo /9) +
b_day - 730531;
JE = 367 * e_yr - floor(7 * (e_yr + floor((e_mo + 9) / 12)) / 4) +
floor(275*e_mo /8) +
e_day - 730531;

constint days = JE - JB + 11;
/I aflocate space for array and il in header and footer
matrix = new char{132][60];

‘il matrx47)(0] = "LIGHT LEVEL PLANNING CALENDAR™:
// for(int count=0; count <=131; count++) matrixjcount}i4] = *_*;

retum(matrix);

100

LL.CPP

i

#\.cpp
/]

 routines for i.h, linked iist of location data
j

fincluds “iL.h"

#inciude "dislogs.h"

#include <string.h>

/Rypes of files used in the Save_as dialog
char “types(] =

{

Data Files (.dat)", ™.dat",
“All Files (*.*)", ™™,

0,0

} 3

/Nnitialize a new node ~f the linked list of locations
node::node()

{

data = NULL,

next = NULL,;

}

/Destructor for a node of the linked fist of locations
node::~node()

{

delets data;

}

/IConstructor for the linked list of locations
locations_Jist:-locations_list()

locations_list::clear()
{
if (tist_dirty)

{
zMessage *‘msg = new zMessage(app->rootWindow(). “Locations have ChangedhnSave
Changes?",
"WARNING",

MB_YESNOCANCEL | MB_ICONSTOP),
if (msg->vaiue() == IDCANCEL)

{
retum (0);
}

101

if (msg->vaiue() == [DYES)
{

save();
y }
node “temp, “temp1; {Remp pointers
temp = head, Ifpoint to first node
hoad = NULL,; Iliclear head pointer
while (temp I= NULL) {//step through list, deleting each node
{ ithe node deletes the data portion
temp1 = temp->next;
delete temp;
;Omp = temp1;
list_dirty = FALSE; l/set list as clean
retumn (1); Ifreturn ok.
}

locations_fist::open_dialog(zWindow *pwin)

{
zFileOpenForm *fs = new zFileOpenForm(app->rootWindow(), "Open File",
(char *) datafile, types);

if (fs->completed() 15f dialog was completed ok

{
datafile = fs->name(); 1/ use the new file name
open(); {/ and open that file.
}
retumn (1);

}

locations_list::open()

{

clear(); ficlear the old list, to check if clean

FILE *fp;

node “temp;

int result;

fp = fopen(datafile, "rb”); //open the file

if (Mp) retumn(0); llopen fails, report same

while(1) /if opened ok, continue
{
temp = new node;

temp->data = new location_struct;
result = fread(temp->data, sizeof(location_struct), 1, fp); //read data

if (result == Q) I/ data read falled
{ /] delete temp node, and retum
delete temp;
break;
}
temp->next = head;
head = temp;
}
if (fclose(fp) i= 0) retum(0); //if close fails, return failed
list_dirty = FALSE; l/set list to clean

102

retun(1);

int
locations_list::save()
{
node “temp;
FILE *fp;
fp = fopen(datafile, “wb");
if (ifp) retum (0):
temp = head;
while (temp = NULL)

{
fwrite(temp->data, sizeof(location_struct), 1, fp);
;emp = temp->next;

fclose(ip);

list_dirty = FALSE;

retum (1);

}

nt
focations_list::saveas(zWindow *pwin)
{
zFlleSaveAsForm *fs = new zFileSaveAsFomm(app->rootWindow(), "Save As",

(char *) datafile, types);
if (f&{>eompmd0)

datafile = fs->name();
;WOO:
retum (1);

}

locations_list::add_record(location_struct “temp_location)
{
node “temp_node, temp;
temp_node = new node;
Ilpoﬁunodetommmﬁnknodemm

locations_list::add_dislog(zWindow *pwin, locations_list *If)
{
C_dig_locations “dig_locs = new C_dig_locations(ll, pwin,
ZResld(DIALOG_LOCATIONS));
lf(dgi_locooeomplmdm

/imake some temporary pointers

103

location_struct *temp_location;
//make a new node and new data structure
temp_location = new location_struct;
/mmmmmwmm

locations_list::edit_dialog(zWindow *pwin, locations_list *I)
(

C_dig_loc_edit *dig_edit = new C_dig_loc_edit(i, pwin, ZResld(EDIT_LOCATION), head);
/imake some temporary pointers

node “temp = head;

if (dig_edit->completed())

{
while ((temp 1= NULL) && (temp->data->desc I= dig_edit->_location))

{
;emp = temp->next;
if (temp {= NULL)
{
strepy(temp->data->desc, dig_edit->location();
temp->data->latdeg = dig_edit->_latdeg;
temp->data->latmin = dig_edit->_latmin;
temp->data->NS = dig_edit->_N - 505;
temp->data->iondeg = dig_edit->_londeg;
temp->dats->lonmin = dig_edit->_jonmin;
temp->data->EW = dig_edit->_E - 509;
temp->data->GMT = dig_edit->_GMT,
temp->data->DST = dig_edit->_DST;
list_dirty = TRUE
}
delets dig_edit;
I/ all was successful, retum true
retum(TRUE);

104

locstions_list::delete_dialog(zWindow “pwin, locations_list *Il)

{

C_dig_loc_del °dig_de! = new C_dig_loc_dei(ll, pwin, zZResid(LOCATION_DELETE), head),
/imake some temporary pointers

node *temp, “temp1;

temp = head;

temp1 = temp;

if (dig_del->completed()

{
while ((temp 1= NULL) && (temp->data->desc != dig_del->_location))
{

temp1 = temp;
temp = temp->next;

}
if (temp = NULL)
{
if (temp == head)

{
head = temp->next;

}
else

{
temp1->next = temp->next;
}

delete temp;

list_dirty = TRUE;
}
}
delete dig_del;
Ifif all was successful, retum true
;eMn(TRUE):

node* locations_list::find(zString &desc)
{
node “temp,
temp = head;
while (temp i= NULL)
{
if (temp->data->desc == desc)
{
;ﬁﬂm (temp);
;omp = temp->next;
retum (NULL);
}

char*
locations_list::get_next(

{
node “old = temp_ptr;

105

if (temp_ptr) temp_ptr = W_Wm

106

LOCATIONS.CPP

locations::add()

{
node “temp;
char *string = "string here";
float lat = 123.45, ing = 678.90;
float GMT = 8.0;
int DST =1, lock;

for (Int x = 0; x<3; x++)

{
cout << "\nenter a number...";

107

fp = fopen(f_name, "wb");
i (¥p) retumy(0);

femp = head;

while (lemp = NULL)

{
fwrite(&temp->data, sizeof(S_location), 1, fp);
temp = temp->next;

}
¥ (fclose(fp) != 0) retum(0);
return(1);

FILE *fp;
node “temp;
int result;
fp = fopen(f_name, “rb");
if (¥p) retumy(0);
whlo((‘l)
temp = new node;
result = fread(Stemp->data, sizeoi(S_location), 1, fp);

108

¥ (resukt == 0)
{

delete temp;

o
temp->next = head;
head = temp;

}
i (fclose(fp) t= 0) retum(0);
retumy(1);

109

MENUFRAM.CPP

i

il menufram.cpp

/]

#include “menufram.h"

MenuFrame::MenuF rame(xWindow* parent.zSizer* siz, DWORD winStyle, const char*
title):zAppFrame(parent,siz,winStyle title) {
menu(new zMenu(this, zResid(MENU_M*'N)));
menu(->setCommand(this,(CommandProc)&MenuFrame::doExit,ID_MENU_FILEEXIT);
) menu()->setCommand(this,(CommandProc)&MenuFrame::AddLocstion,iD_MENU_LOCS_ADD);
MenuFrame::~MenuFrame() {
NULL;
}
int
MenuFrame::doExit(zCommendEvt “ce)
{

ZMessage mess{app->rootWindow(),” Exit MOONLITE?",™ MB_OKCANCEL),
L (m‘:_-m) app->quit);

}
MenuFrame::AddLocstion(zCommandEvt “ce)
#->add(this);

MenuFrame::command(zCommandEvt *ce) {
tp->clearRect();
tp->moveTo(0,0);
retum 1;

}

110

111

DWORD

{
fclose(fp);
bmpPane->display("moonlite.bmp”); {fopen ok, display bmp

}
seticon(new zicon{zResid(ICON_1)));
menu(new zMenu(this, zResid(MENU_MAIN)));
menu()->setCommand(this,(CommandProc)&MenuF rame::doExit,ID_MENU_FILEEXIT);
menu()->setCommand(this,(CommandProc)&MenuFrame::AddLocation,ID_MENU_LOCS_ADD);
menu()->setCommand(this,(CommandProc)&MenuF rame::EditLocation,iD_MENU_LOCS_EDIT);

menu()-

>setCommand(this,(CommandProc)&MenuF rame::DeleteLocation,ID_MENU_LOCS_DELETE);
menu()->setCommand(this,(CommandProc)&MenuFrame::FileSave,ID_MENU_FILESAVE),
ummO-netCaumnd(Ws.(CommndProc)&MmuFm::FiloOpen.ID_MENU_FILEOPEN);
menu()->setCommand(this, (CommandProc)&MenuFrame::FileNew,ID_MENU_FILENEW),
muoommm.(cmmmeusz:FHeSweAs,ID_MENU_FILESAVEAS);
menu()->setCommand(this, (CommandProc)&MenuFrame::SpotData,ID_MENU_SPOTDATA);
menu()->setCommand(this,(CommandProc)&MenuFrame::Event,ID_MENU_DAILYEVENTS);
menu()->setCommand(this,(CommandProc)&MenuFrame::Position,|D_MENU_POSITION),

}

MenuFrame::~MenuFrame() {
NULL;
}

int
MenuFrame::doExitizCommandEvt “ce)
if (u-;pook_lm_dinyO)
zMessage “msg = new zMessage(this, “Locations have Changed!\nSave Changes?",
"WARNING",

MB_YESNO | MB_ICONSTOP);
if (meg->value() == IDYES)

112

113

int
MenuFrame: kil(zEvent *ev)
{
)Mum (M->cleer()),
void 2App::main{) { _
MenuFrame *mainvWnd=new MenuFrame(0,new zSizer(10,10,625,520),zSTOFRAME,"MOONLITE");
mainWnd->show();
f (l(l(->ow'0))
ZMessage “mag = new zMessage(app->rootWindow(), “MOONLITE .dat not found.\nNo locations

loaded”,
"WARNING",
MB_OK | MB_ICONSTOP);
}
go(:
delete mainWnd

114

ROUTINES.CPP

"
1/ routines.cpp
"

#include<alloc.h>
#inciude “routines.h”
#include "dislogs.h"
#include "ii.h"

routines::routines(locations_list “list_in)

{
i = list_in;
}

routines::spctdata()
{
C_dig_spotdata “dig_spot = new C_dig_spotdata(ll, zResid(SPOT_DETAIL));
;Hm dig_spot;

routines::event()

{
C_dig_Event *dig_event = new C_dig_Event(ll, zZResId(EVENTS));
;lelete dig_event;

routines::position()

{

C_dig_Pos *pos_get = new C_dig_Pos(li, zResid(POSITION));

delete pos_get;
/I POS_CHART_DLG “pos_chart = new POS_CHART_DLG(zResld(Position_Chart));
// delete pos_chart;

}

115

r-
[F)
o

[2]

B3]

[4]

(5]

(6

7

(8]

[9]

[10]

LIST OF REFERENCES

United States Marine Corps, Marine Aviation Weapons and Tactics Squadron
One, Helicopter NVG Manual, Assault Support Division, MAWTS-1, Yuma,
Arizona 85369-6073

United States Marine Corps, Marine Aviation Weapons and Tactics Squadron
One, Litelevl User's Guide, MAWTS-1, Yuma, Arizona 85369-6073

Conversations between Dr. P. M. Janiczek, United States Naval Observatory,
Astronomical Applications Division and the author, 1992 - 1994

Personal notes of Dr. P.M. Janiczek used for the creation of reference [2].

United States Naval Observatory Circular No. 171, Computer Programs for Sun
and Moon llluminance With Contingent Tables and Diagrams, P.M. Janiczek and
J.A. DeYoung, February 19, 1987.

Borland International, Borland C++ Version 4.0 Programmers Guide, 1993

Hennessy, John L, and Patterson, David A, Computer Architecture, a Quantitative
Approach, Morgan Kaufmann, 1990.

Inmark Development, Zapp Programmer's Reference, 1993

Handbook of Geophysics and the Space Environment. Scientific editor:
Adolph S. Jursa. AFGL, AFSYSCOM (1985). Order from NTIS, Springfield,
VA 22161, Document Accession No: ADA 167000.

Stubbs, Daniel F. & Webre, Neil W., Data Structures with Abstract Data Types
and ADA, PWS-Kent, 1993

116

BIBLIOGRAPHY

Berry, John Thomas, C++ Programming, Sams, 1992

McCord, James W., Boriand C++ Programmer's Reference 2nd Edition, Que,
1992

Person, Ron & Rose, Karen, Using Windows 3.1, Que, 1993
Shammas, Namir Clement, Advanced C++, Sams, 1992
Stroustrup, Bjarne, The C++ Programming Language, Addison-Wesley, 1991

United States Congress, House of the, Night Vision Goggles, Hearing before the
Investigation Subcommittee on Armed Services, U.S. Government Printing Office,
Washington, D.C. 1989

Yourdon, Edward, Modern Structured Analysis, Yourdon Press, 1989

117

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5101

Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Professor Douglas J. Fouts, Code EC/Fs
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Raymond F. Bemstein Jr., Code EC/Be

Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Director, Training and Education
MCCDC, Code C46

1019 Eliot Rd.

Quantico, VA 22134-5027

Doctor Paul M. Janiczek

United States Naval Observatory
3450 Massachusets Avenue N.W.
Washington, DC 20392-5420

Mr. Jules Lewyckyj

Naval Air Warfare Center
Warminster, PA 18974

118

Captain Michael T. Lester
125 Leidig Circle
Monterey, CA 93940

119

ipicacy s 5 S

